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Nanocrystalline Diamond for RF MEMS Applications 

 

Srinath Balachandran 

 

ABSTRACT 

 

Nanocrystalline diamond (NCD) due its outstanding thermal, mechanical and 

tribological properties is an ideal candidate for MEMS/NEMS devices. NCD offers the 

possibility to increase the reliability and life time of RF-MEMS switches and by 

mitigating the problems of stiction, charge trapping, surface wear and cold welding found 

in traditional all metal MEMS devices.  

In this work, nanocrystalline diamond cantilever beams and bridges have been 

fabricated on a low resistive silicon substrate by using standard micromachining 

techniques. The diamond structures are then integrated onto alumina and aluminium 

nitride substrates upon which microwave transmission lines in the microstrip and 

coplanar waveguide (CPW) topology have been fabricated. The diamond actuators are 

integrated using a combined soldering and flip chip technique. The NCD bridges are 

thermally actuated wherein the difference in coefficient of thermal expansion between 

copper and diamond bends the diamond bridge thus moving the bridges to the actuated 

state. In the CPW topology, RF-MEMS switches and tunable planar inductors are 

realized using the micromachined devices. These devices are mounted on a 650μm thick 

alumina substrate and the microwave characteristics are analyzed in the frequency range 

of 5-30 GHz. The switches yield a return loss of 15 dB and an insertion loss of 0.2 dB at 

20GHz. An inductance ratio of 2.2 is achieved by the tunable inductors at 30 GHz. High 

power measurements are performed on the diamond actuators which utilize a dual 

actuation scheme which comprises of thermal and electrostatic actuation. The 

measurements are performed on the diamond actuators in the power range of 24-47 dBm 
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for the mechanically actuated switches, and 24-40 dBm for electrically actuated switches. 

The measurements show an insertion loss of 0.2-03 dB in the entire power spectrum. 

NCD based RF-MEMS capacitive switches is also designed, fabricated and tested. 

The switches are fabricated on a high resistive silicon substrate and are electrostatically 

actuated. Small signal measurements are presented in the frequency range of 1-65 GHz. 

The measured insertion loss in the up-state is 1.1 dB at 50 GHz with 30 dB isolation in 

the down-state. Dielectric characterization is performed using the Corona-Kelvin 

technique and the standard I-V and C-V stress tests for nitride and diamond films. The 

leaky nature of the diamond films provides a potential solution to reliability issues related 

to dielectric charging. 
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Chapter 1 

Introduction 

 

1.1 Overview 

Micro-Electro-Mechanical Systems (MEMS) technology is a rapidly growing 

field and finds various applications that include RF/Microwave circuit design, including 

the development of switches and tuning elements such as capacitors and inductors. 

MEMS are integrated systems combining both electrical and mechanical components. 

They are traditionally in the microscale, but also extend to a few millimeters. MEMS 

devices can be used as miniature sensors, controllers or actuators and have commercial 

uses which include pressure sensors, flow sensors, accelerometers, and optical scanners 

[1-3].   Switches are fundamental components that are used in Radio Frequency 

Integrated Circuits (RFICs) and other wireless front-end circuitry. Switches are of 

different kinds and can be broadly classified as active and passive. Field effect transistors 

(FETs) and PIN diodes are generally used in active switches. RF-MEMS based devices 

predominantly use passive, metal contact or capacitive type switches. In addition to being 

used in passive tuning circuits, inductors play a role in resonators for low phase-noise 

voltage controlled oscillators, filter components and reactive impedance elements in RF 

circuits.  

RF-MEMS devices are fabricated through bulk micromachining, surface 

micromachining, or LIGA techniques [1-4]. Bulk micromachining is the process of 

fabricating devices by directly etching into a wafer. In this technique both sides of the 

wafer can be patterned and etched and can be used to assemble three dimensional 

structures. The method is widely used in forming membranes, holes, beams and grooves 

[4]. The surface micromachining technique consists of building up micro electro 

mechanical structures in layers of thin films on the surface of a wafer (or any other 

suitable substrate). It is different from bulk processes as the devices are fabricated 
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entirely out of the thin film material. Unlike surface milling, in surface micromachining 

layers of materials can be added or subtracted [1, 4]. LIGA is a German acronym which 

stands for Lithography, Electroplating and Molding and is a technique used to produce 

molds for the fabrication of micromachined components [5]. 

At present, MEMS components are dominated by silicon technologies. Silicon is 

the only material to combine sensors and actuators with passive and active electronics for 

signal readout, data conversion, data processing, data storage, and so forth. Silicon wafer 

substrates or films as well as fabrication methods for devices have reached a nearly ideal 

status in terms of quality and yield. However, for applications under extreme conditions 

silicon may not be suitable any more. Such harsh environments are for instance high 

temperatures, aggressive media, or high energy particle radiation. For these purposes 

semiconductors with a wide bandgap and ceramics are preferable. An excellent candidate 

in this respect is diamond. It is extremely hard and stiff, mechanically and temperature 

stable, chemically inert and corrosion resistant, piezoresistive, and has the highest 

thermal conductivity of all natural solids at room temperature. Its resistivity range can be 

varied by doping over about 1015 orders of magnitude from highly insulating to quasi-

metallic. Besides, its mechanically-relevant material properties such as Young’s modulus 

and hardness remain practically the same within a wide range of temperature. Also quasi-

metallic electrical conductivity is nearly temperature independent within typical 

operation regimes of MEMS. 

With particular reference to RF-MEMS switches, the superior mechanical and 

electrical properties of diamond can eliminate, or at least mitigate, common failure 

mechanisms. For Ohmic switches these mechanisms include wear at contact surfaces, 

surface hardening and cold welding which can arise from electrical arching and resistive 

heating. The high hardness and thermal conductivity of nanocrystalline diamond (NCD) 

enables significant improvements in each of these areas.  However, for Ohmic switches, 

if diamond is to be used as contact, it needs to have high electrical conductivity, which 

currently is only provided by the unique nitrogen-doped ultrananocrystalline diamond (N-

UNCD) developed and patented at Argonne National Laboratories [6]. For the capacitive 

switches, an additional failure mechanism is charge trapping at the surface of the 
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insulating material used on the bottom electrode (typically silicon nitride or SiO2); 

depending on the nature of the trapping the switch may spontaneously release or remain 

closed when the bias voltage is removed. The dielectric properties of diamond films can 

be varied by controlling the amount of incorporated hydrogen in the plasma and thereby 

changing the carbon bonding configuration at the grain boundary, providing a novel 

approach to producing a leaky dielectric, which is one approach to minimizing or 

eliminating the charging problem in RF-MEMS switches. 

This research is mainly focused on combining NCD films and RF-MEMS 

technology to generate tunable NCD DC contact switches, inductors and capacitive shunt 

switches using diamond as a dielectric. The DC contact switches are fabricated on a low 

resistivity silicon substrate and a combination of surface and bulk micromachining 

techniques are used to realize tunable devices in CPW and microstrip configurations. The 

tunable switches and inductors are integrated using solid-liquid interdiffusion, which is a 

popular technique in assembling interconnects in the IC industry. Figure 1.1 shows the 

cross section of an integrated NCD actuator to a host substrate which carries the 

microwave transmission lines. 

 
Figure 1.1 – Cross Section of the NCD Actuator Integrated to a Host Substrate  

 

In order to fabricate these actuators for reliability, the mechanical characteristics 

of NCD thin films should be well understood. The first part of this research is focused on 

the growth process, material and mechanical characterization of doped and undoped NCD 

ilicon Frame 

Doped NCD Actuator

Microwave Transmission 
Line 

Host Substrate

Silicon Frame 

Doped NCD Actuator

Microwave Transmission
Line 
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films. The diamond actuators are designed to operate in a bi-stable configuration. In order 

to understand the operation, mechanical simulations using ANSYSTM are carried out. The 

microwave performance of the switches and inductors is studied by measuring the S-

parameters of the devices in the frequency range of 1- 40 GHz. Finally, these actuators 

are tested for microwave performance and mechanical stability by performing large 

signal measurements at 1.9 GHz and 2.1 GHz with varying power levels. 

The next portion of this research is focused on developing capacitive shunt 

switches using NCD as a dielectric. Figure 1.2 shows the top view of the device. Prior to 

making these devices, the growth of NCD on metallic films is studied. In order to obtain 

reliable films, diamond requires carbide forming materials. For this purpose both 

tungsten and molybdenum deposited by sputtering techniques are used.  

 

NCD Dielectric

 Bottom Electrode

Shunt 
Beam

CPW 
TL

 
Figure 1.2 – Design of the Capacitive Shunt Switch with NCD as a Dielectric 

 

Electromagnetic simulations using Agilent’s Advanced Design System (ADS) 

software and small signal measurements are carried out in the frequency range of 1-65 

GHz to understand the microwave characteristics of the switch. The charging 

characteristics of thin film NCD is studied using Corona Kelvin metrology (CKM), C-V 

and I-V measurements to demonstrate the leaky and non-charging nature of the diamond 

films. These measurements are carried out for NCD based metal-insulator-metal (MIM) 

capacitors and MEMS switches. 
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1.2 Dissertation Organization 

Chapter 2 presents the background of RF-MEMS technology. Different types of 

capacitive switches along with S-parameter simulation results and lumped element 

models will be presented. A comprehensive study of the limitations of capacitive and DC 

contact switches will be discussed. Furthermore, the various microactuation techniques 

are discussed along with the parameters which have an influence on the actuation voltage. 

The mechanical aspects, forces which play a role in the bending of the beams, and their 

uses in the area of MEMS are discussed. 

In Chapter 3, the growth along with the seeding techniques to develop intrinsic 

and doped NCD films will be presented. The two popular schools of thought involved in 

diamond growth, hydrogen chemistry and argon chemistry, are discussed in detail. Apart 

from micromachining techniques, measurement techniques to understand the mechanical 

properties that include Young’s modulus, intrinsic stress and mechanical resonant 

frequency of NCD cantilevers are reviewed. Finally, the effect of process of parameters 

on the intrinsic stress during growth and its distribution on a 4-inch wafer will be 

highlighted through measurements. 

The design, fabrication and measurement results of a thermally actuated NCD 

actuator are presented in Chapter 4. Mechanical simulations are performed in ANSYSTM 

to achieve bi-stable mode of operation of the actuator and small signal simulations of the 

switch and tunable inductor are performed in Agilent’s ADS software. In addition to the 

integration techniques, high power measurements of the NCD actuator integrated in a 

microstrip topology will be presented. 

Chapter 5 deals with the design, fabrication and measurement of NCD based 

capacitive shunt switches. Material characterization highlighting the quality of diamond 

growth on metallic thin films will be presented. In addition to the simulation and 

measurement of S-Parameter results, charging properties of NCD as a dielectric will be 

discussed using Corona Kelvin metrology (CKM), I-V and C-V measurements. C-V and 

I-V measurements are performed on both MIM and MEM structures. 
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Chapter 6 concludes the dissertation with a discussion of improvements and 

future directions for NCD based RF-MEMS devices. For completeness, appendices with 

fabrication details are presented. 

 

1.3 Contributions 

The following contributions have been made to the RF-MEMS and diamond 

community through this dissertation research. 

• A thorough analysis of the growth process involved in developing intrinsic 

and doped diamond films. The two schools of thought, hydrogen chemistry 

and argon chemistry, and the various seeding methodologies and their effect 

on the quality of the films are discussed. Although system dependent, the 

various process parameters which are involved in controlling the stress in the 

NCD films have been studied. 

• A thermally actuated NCD based actuator is integrated using a SOLIDTM 

process to realize RF-MEMS based switches and tunable inductors in a CPW 

topology. The switches and inductors are tested up to 40 GHz. High power 

measurements are performed on the microstrip switch in the power range of 

24-47 with an insertion loss of 0.2-0.3 dB in the entire frequency range. To 

the best of the author’s knowledge this is the first demonstration a fully 

integrated diamond switch for microwave applications. 

• Intrinsic NCD films are used as the dielectric layer in capacitive shunt 

switches. The switch is electro-statically actuated and small signal 

measurements are presented in the frequency range of 1-65 GHz. The 

measured insertion loss in the up-state is ~ 1.1 dB at ~50 GHz with 30 dB 

isolation in the off-state. Dielectric characterization was performed using the 

Corona-Kelvin technique and standard I-V testing on comparison nitride and 

diamond test fixtures. The leaky nature of the diamond films provides a 

potential solution to reliability issues related to dielectric charging. To the best 

of the author’s knowledge this is the first RF-MEMS capacitive switch using 

NCD as a dielectric. 
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Chapter 2 

RF-MEMS – An Overview of the Technology and its Reliability Issues 

 

2.1 Introduction 

Micro-Electro-Mechanical Systems (MEMS) technology is a rapidly growing 

field and finds various applications that include RF/microwave circuit design. MEMS are 

integrated systems combining both electrical and mechanical components. MEMS 

structures are batch fabricated using standard integrated circuit processing techniques and 

can range in size from micrometers to millimeters. These devices have been in 

development since the early 90’s and have since matured and attract significant attention 

in defense and commercial applications. Their commercial applications are in the 

wireless, automotive and biomedical industries and they have been used in 

accelerometers, pressure sensors and flow sensors. Micromachining provides a new 

dimension to the fabrication of high performance and low cost circuits when compared to 

the circuits fabricated using conventional MMIC processing. The field of MEMS and 

micromachining has been applied to RF (less than 2GHz) to millimeter wave frequency 

(3 to 300GHz) circuits to create high-performance passive components such as switches, 

phase shifters, high-Q varactors, tunable filters, matching networks and oscillators [7].  

In this chapter, RF-MEMS switches with various topologies and actuation 

schemes will be presented. An overview of capacitive switches with small signal 

simulation results performed in Agilent’s Advanced Design System (ADS) will be 

presented. Finally the shortcomings of RF-MEMS that include power handling 

limitations for Ohmic contact switches and reliability issues due to charging in capacitive 

switches will be discussed in detail. 
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2.2 Overview of RF-MEMS Switches 

Most of the RF-MEMS devices designed and fabricated to date use silicon, glass, 

or quartz substrates [8-10] and are monolithically integrated. These devices have been 

fabricated utilizing electrostatic [8], thermal [9] and piezoelectric [10] actuation schemes. 

RF switches are one of the most researched and fabricated devices in the MEMS 

technology. These devices outperform their active counterparts that include field effect 

transistors (FETs) and pin-diodes in terms of loss at high frequencies, linearity and power 

consumption. Although established since its introduction in the early 90’s, RF-MEMS 

devices still has reliability issues, slow switching speed, high packaging costs and high 

power handling limitations in comparison to the active devices. Recent developments 

have at least reduced the above mentioned limitations. Table 2.1 [7] presents a 

comparison of MEMS switches with PIN diodes and FETs. 

 

Table 2.1 – Performance Comparison Between FETs, PIN Diodes and RF-MEMS 

Switches 

Parameters RF-MEMS PIN FET 

Actuation Voltage (V) 20 - 80 +/-3 - 5 3 – 5 

Power Consumption 

(mW) 

0.05 - 0.1 5 - 100 0.05 - 0.1 

Switching Time 1 - 300 μs 5 - 100 ns 1 - 100 ns 

Isolation (1-10 GHZ) Very High High Medium 

Isolation (10-40 GHZ) Very High Medium Low 

Loss (1-40 GHZ) (dB) 0.05 - 0.2 0.3 – 1.2 0.4 – 2.5 

Power Handling (W) <1 <10 <10 

 

RF-MEMS switches can be fabricated using a floating cantilever (dive board 

design) or fixed-fixed membrane as shown Figure 2.1 and Figure 2.2, respectively. These 

moveable membranes are modeled as mechanical springs with an equivalent spring 

constant, k [N/m]. The spring constant depends on the geometrical dimensions of the 

membrane or cantilever and on the Young’s modulus of the material used (Au, Al, 



www.manaraa.com

 9

nitride, etc.) and is 5-40 N/m for most RF-MEMS switch designs [7]. The switches have 

very low mass, around 10-10 to 10-11 Kg and, therefore, are not sensitive to acceleration 

forces. These switches can be fabricated in the microstrip and CPW topologies. In a CPW 

configuration, the anchors of the switch are directly connected to ground plane or signal 

line depending on the switch type. Via-holes or a quarter wavelength open stub are used 

to connect the anchors to the ground plane in the microstrip topology. RF-MEMS 

switches can be fabricated as DC contact or capacitively coupled switches. The following 

section presents the design and simulation results of series and shunt capacitive switches. 

 

 
Figure 2.1 – Broadside MEMS Series Switch Utilizing Cantilever Beams [11] 

 

 
Figure 2.2 – Raytheon MEMS Capacitive Shunt Switch Utilizing Fixed-Fixed Beam [11] 
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2.2.1 Capacitive Switches 

Capacitive RF-MEMS switches consist of a movable membrane that is used to 

realize a variable capacitance, and thereby a variation in impedance between the non-

actuated (“OFF”) and actuated (“ON”) states. A DC voltage is applied between the bridge 

and the transmission line, causing the bridge to collapse on a dielectric layer. The 

increased capacitance value that arises when the bridge or beam is actuated connects the 

transmission line to the ground and acts as a short at microwave frequencies. The 

dielectric layer in capacitive switches is generally formed using a PECVD growth process 

to achieve conformal deposition. The dielectric thickness depends on the required 

capacitance ratio as per the application. The popular dielectric materials used in RF-

MEMS switches are silicon nitride and silicon oxide. The bridge height is typically 

between 2-3 μm, length of the moveable membrane is 250-400 μm, and the width is 

between 30-150 μm. As stated earlier, capacitive switches can be designed in series and 

shunt configurations; Figure 2.3 shows a RF-MEMS capacitive switch in a series 

configuration. 

 
Figure 2.3 – Capacitive RF-MEMS Switch in a Series Configuration 

 
Relatively simple circuit schematics can be used to emulate the electrical response 

of a capacitive switch. The capacitive switch shown in Figure 2.3 can be represented as a 

series capacitor-inductor-resistor (CLR) network. Figure 2.4 shows the circuit schematic 

of a series capacitive switch; in this circuit the series capacitance varies between 30fF in 

the non-actuated state to 3 pF in the actuated state. The inductance contributed by the 
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bridge is assumed to be 10 pH, and the contact resistance contributed by the bridge is 

accounted for with the 0.5 Ω resistor. 

 
Figure 2.4 – Equivalent Circuit of a Series Capacitive Switch 

 

One of the major disadvantages of a series capacitive switch is the low return loss 

associated with the non-actuated state. When the beam is the up-state, which is the RF-

OFF (non-actuated) state, the switch capacitance is small and hence most of the signal is 

reflected back. When actuated, i.e. when the beam makes contact with the dielectric 

layer, the switch capacitance becomes high and the switch is the ON state. In this state, 

the switch exhibits a high–pass characteristic with the cut-off frequency. The cut-off 

frequency, which is controlled by the bridge inductance and capacitance values, defines 

the working range of the device. For the circuit in Figure 2.4, the device can be 

considered as a switch for a frequency less than 5 GHz wherein the isolation is greater 

than 20 dB in the OFF state and the insertion loss is less than 1 dB in the ON state. Figure 

2.5 shows the S-parameters of the series switch in the OFF and ON states. For an ideal 

series switch designed to provide an isolation and insertion loss better than 40-50 dB and 

0.2dB in the K band frequency range, respectively, the capacitance ratio should be on the 

order of ~ 3000. This ratio is difficult to achieve in practice, often prompting the use of a 

DC contact switch in combination with a capacitive shunt switch [12]. 
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Figure 2.5 – S-Parameters of the Capacitive Series Switch in the OFF and ON States 

 
Figure 2.6 and Figure 2.7 show the design and equivalent circuit of a capacitive 

shunt switch, respectively.  Similar to the series switch, the capacitance varies between 

30 fF in the OFF state to 3 pF in the ON state. The inductance and resistance values are 

assumed to be similar to that of the series switch.  

 

Dielectric 

Moveable 
Membrane

 
Figure 2.6 – Capacitive RF-MEMS Switch in Shunt Configuration 
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Figure 2.7 – Equivalent Circuit of a Capacitive Shunt Switch 

 
In the shunt switch, when the beam is in the non-actuated state, the return loss is 

dominated by the 30 fF capacitor. Upon actuation, the signal goes through the high 

capacitance path to ground, thereby providing good isolation between the two ports. 

Figure 2.8 shows the simulated S-parameters of the capacitive shunt switch in the ON 

and OFF states. At high frequencies the combined effect of the inductance of the bridge 

and capacitance causes a resonance (minimum impedance to ground) in the isolation 

response. 
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Figure 2.8 – S-Parameters of the Capacitive Shunt Switch in the ON and OFF States 
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The capacitive shunt switch developed by C. Goldsmith et al. [13] and the DC contact 

series switch developed by Lincoln laboratories [14] have been used as standards in their 

respective configurations. 

 
2.3 Actuation Schemes in RF-MEMS 

Actuation refers to the act of affecting or transmitting mechanical motion, forces 

and work by a device or system on its surroundings in response to the application of a 

bias voltage or current [15]. Considerable research has been directed at designing and 

fabricating RF-MEMS devices with a variety of different actuation schemes. The most 

popular actuation schemes used in MEMS processes are electrostatic actuation, 

piezoelectric actuation, magnetic actuation, and thermal actuation  

Electrostatic actuation [1, 2], which is the simplest and the easiest to control, is 

the preferred actuation scheme in many MEMS applications. In this case, the positive and 

negative charges set by applied voltages on structures elicit Coulomb forces which cause 

motion. This electrostatic force between a top and bottom electrode when a DC potential 

is applied is given by 

     2
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where V, g, and td are the voltage, electrode gap and thickness of the dielectric layer, 

respectively. The threshold voltage which is the voltage at which the moveable 

membrane falls on to the bottom electrode, can be approximated to the value shown in 

equation 2.2 wherein Vth is the threshold voltage, E is the Young’s modulus, I is the 

geometrical moment of inertia, td is the inter-electrode distance, and l and w are the 

length and width of the structure. 
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Electrostatic actuation is useful in applications where integration on a chip is easy 

from a fabrication point of view. Most of the MEMS beams which are easily fabricated 

require more than 15 volts for actuation, which is typically not compatible with low 
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voltage CMOS applications. Also, there is no proper scheme for producing repulsive 

forces using this method of actuation. In addition to RF-MEMS switches, electrostatic 

actuation is also used in actuators for resonators and light modulators 

Piezoelectricity is a phenomenon in which a mechanical stress on a material 

produces an electrical polarization and, reciprocally, an applied field produces a 

mechanical stress. In piezoelectric actuation [7] the applied voltage induces fields which 

change the dimension of structure and this dimensional change is used to cause motion. 

Here the electrically induced strain is approximately proportional to the applied electric 

field. The stress associated with this actuation scheme is very high, which constitutes a 

high energy density. Piezoelectric actuation scheme has its share of advantages and 

disadvantages in comparison to electrostatic actuation. Although the actuation voltage is 

very less (w.r.t electrostatic actuation), integrating piezo materials with host substrate and 

the fabrication methodologies are complicated.  Potential limitations of piezoelectric 

actuation include hysteresis behavior, change in response over time [16]. Piezoelectric 

materials (ZnO, AlN) are characterized by the charge sensitivity coefficients, dij, which 

relate the amount of charge generated at the surfaces of the material on the i axis to the 

applied force, F, on the j axis 

 

AdFdQ ijjiji σΔ=Δ=Δ                                        (2.3) 

The voltage across the electrodes can be given as, 
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The popular materials which exhibit piezoelectric properties are barium titanate 

(BaTiO3), lead zirconium titanate (PZT), zinc oxide (ZnO) and aluminum nitride (AlN). 

These materials have been used in many RF-MEMS devices such as phase shifters, filters 

etc. [7] 

Magnetic actuation is not common in MEMS process because, apart from being 

incompatible with CMOS processes, the fabrication process is very tedious. In this 

actuation scheme, the magnet-induced or current-induced magnetic force produces 
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motion. This force is caused when charge carriers travel through a perpendicular 

magnetic field thereby causing a deflection; this is popularly known as the Lorentz force 

[17]. The charges produce a voltage called the Hall voltage which is used in the actuation 

scheme. The hall voltage as shown in equation 2.5 is dependent on the hall coefficient 

(RH), current density (J), width of the structure (W), and magnetic flux density (BZ). 

 

ZXHH WBJRV =         (2.5) 

Magnetic actuation [2, 7] is difficult because ferromagnetic materials are required for 

focusing the magnetic flux needed for actuation. On the positive side, magnetic actuation 

in MEMS provides sufficient force and requires very small voltages for actuation. 

Magnetic actuators find their application in micro generators and in low-voltage/large –

force /low –efficiency actuators. 

In the case of thermal actuation, the current or voltage applied causes an element 

to heat up and expand. This expansion results in a dimensional change used to 

communicate motion. The coefficient of thermal expansion, αL, quantifies the relative 

dimensional change of an object that occurs for a change in temperature. The movement 

in the actuator is achieved when two dissimilar materials with different αL are 

sandwiched together. This principle is used in thermostat switches which use the 

bimetallic or thermal bimorph mechanism. Similar to magnetic actuation, thermal 

actuation requires very low voltage for actuation. Power consumption, which is a major 

limitation of this scheme, can be avoided by using bi-stable structures [18] or dual mode 

actuation schemes [19]. Thermal actuation is used in gas pressure sensors, thermal flow 

sensors and in humidity sensors [2].  

Apart from the aforementioned there are other actuation schemes that include 

electrostrictive actuation, magnetostrictive actuation, ultrasonic actuation and chemical 

actuation. These methods are not widely popular and are used for specific purposes 

depending on the nature of the application.  



www.manaraa.com

 17

2.4 Failure Mechanisms of RF-MEMS Switches 

When first introduced, RF-MEMS devices had limitations with reliability, power 

handling, switching speed, high-voltage drive and packaging. Recent developments by 

researchers at MIT Lincoln Lab and the University of California at San Diego [14, 20] 

have successfully demonstrated long term reliability up to a few hundred billion cycles. 

These reliability experiments have been carried out for both DC contact and capacitive 

switches under hot and cold switching conditions. The switching speed of RF-MEMS 

devices was considered slow in comparison to active competitors, however special 

fabrication techniques like the focused ion-beam (FIB) milled nano-switch [21] and 

“Mini-MEMS” [22] switches have shown switching speed in the hundreds of 

nanoseconds. Further improvements in these designs are in progress to improve the 

switch speed to less than 200 ns. Performance and reliability of the switches due to 

packaging have been partially addressed in terms wafer level and chip level packaging. 

Glass frit wafer bonding [23], metallic cap technique [24] by Teravicta, low temperature 

thermosonic flip chip and low temperature glass seal ring [25] by XCOM wireless are the 

popular packaging schemes available. Long term reliability and the high cost associated 

with these techniques are still being addressed.  

Apart from the above stated problems, there are two main issues when it comes to 

the reliability of RF-MEMS switches. In capacitive switches, reliability is limited by 

dielectric charging of the insulator layer. In DC contact switches, the reliability is 

affected by the metal contact used and by power handling capabilities. In the following 

section, an overview of charging and the methods to improve the reliability of capacitive 

switches and power handling capabilities for DC contact switches will be presented.  

 

2.4.1 Dielectric Charging  

Reliability of capacitive switches (low power) is reduced mainly due to the 

moveable membrane not releasing or coming back to the normal OFF state after the 

actuation voltage is removed. This failure is mainly due to stiction between the metal 

layer and the dielectric and is caused by charge accumulation due to injection and 

trapping inside the dielectric layer. Charge trapping has been studied extensively in the 



www.manaraa.com

 18

CMOS industry for years for transistor applications. Many groups [26-29] in the RF-

MEMS community have addressed this charging issue in multiple ways which deal with 

surface charging and bulk charging effects. Dielectric charging can be associated with 

stress which can be mechanical, electrical or thermal. Typically during charging, 

electrons are trapped at low electric fields and get released or de-trapped at high fields, 

but holes are typically observed only at high fields (~ 10 MV/cm). Apart from charge 

injection and trapping, the surface and interface of the dielectric layer and electrodes 

where defects are concentrated, will be areas for charge accumulation. 

Figure 2.9 shows the schematic representation of an electrostatically actuated 

capacitive switch. At a certain voltage, the electrostatic force (FE) becomes greater than 

the restoring spring force (Fspring) and causes the top plate to collapse. This voltage is 

called the pull-in-voltage (Vpi). (The pull-in voltage mentioned here is same as the 

threshold voltage discussed earlier.) Once actuated, the beam continues to stay in the 

bottom state until the applied voltage is lesser than the hold down voltage (Vpo). When 

actatuated repeatedly there is net amount of charge injected into the dielectric and this 

effectively changes or shifts the pull-in and pull-out voltages by a margin. This shift in 

voltage, Vshift  changes continuously, leading to the eventual failure of the switch.  

 
Figure 2.9 – Schematic Representation of the Actuation Mechanism in Capacitive RF-

MEMS Switch 

 

When the beam is actuated, the electric field in the dielectric layer is typically on 

the order of few Megavolts/cm. Because of this high electric field, charge is continuously 
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introduced into the dielectric layer thereby changing the electric field in the gap between 

the two electrodes and thus affecting the electrostatic force. A trapped charge in the 

dielectric layer results in image charges in the top and bottom electrodes i.e. if the 

trapped charges are +ve in the dielectric, that results in accumulation of –ve charges in 

the electrodes as shown in Figure 2.10. This reduces the total amount of charge on the 

electrode if a voltage is applied. This voltage shift will eventually change the net 

capacitance contributed by the switch. As reported by Reid, a uniform trap density of 

1012/cm2 is more than enough to cause a capacitive switch to fail in the actuated state. [7] 

 

 

Figure 2.10 – Accumulation of Image Charges on the Electrodes During Actuation 

 
Researchers from NXP semiconductors [30] have suggested two different 

techniques to study charge injection as a function of voltage and time. In the first 

technique, called the whole CV method, capacitance is measured in terms of voltage until 

the pull-in voltage. The shift in voltage is measured from successive CV curves measured 

during the actuation cycle. This technique is probably the oldest and the most well known 

method to evaluate the charging mechanism. In the second technique, the center shift 

method, only the shift in the center part of the CV curve is measured. Through this shift 

the voltage at the lowest capacitance value is calculated by fitting a parabola through the 

center of the curve. This technique is faster than the simple CV and successive 

approximation methods, and therefore has less influence on the device under test. There 

are modifications introduced into this technique wherein RF measurements and voltage 

shift is determined by manually tuning the bias voltage for measuring the capacitance.   

Charging has also been studied by understanding the effects of dipolar and 

intrinsic space charge and interfacial polarization on the RF-MEMS switches. In this 

technique, charging is studied in contactless mode wherein the membrane is actuated at 

low voltages (6-8 volts). Polarization which is caused when an electric field is applied to 
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a dielectric layer is measured and the change in intrinsic polarization effects is monitored. 

This change in the polarization effects is directly related to the change in capacitance of 

the switch. Temperature dependent CV measurements were also performed to understand 

the amphoteric nature of the traps and its effects. Furthermore, a correlation between the 

method of deposition of the dielectric and the thickness of the dielectric in charging 

mechanism was deduced [31]. 

Apart from measuring MEM structures, researchers have analyzed the charging 

mechanism with switches intentionally fabricated in the down-state and on MIM 

structures. I-V and C-V measurements have been done to see the shift in leakage current 

and capacitance, respectively. In these measurements, the current measured from the I-V 

technique is comprised of the displacement current, trap charging current and steady state 

leakage current. The change in the leakage current and capacitance values have also been 

performed under stressed voltage and current conditions. The increasing voltage used in 

the stress testing causes defects in the dielectric layer, which lead to increased current and 

capacitance values [32].  

The use of different dielectric materials to mitigate these charging issues has also 

been suggested by many research groups. PECVD silicon-dioxide has a lower trap 

density than silicon nitride films. Del Rio et al. [33] have demonstrated capacitive 

switches using alumina and zinc oxide alloys as the dielectric layer. The dielectric layer 

is deposited using atomic layer deposition (ALD) technique. The conformal growth of the 

dielectric layer makes it very reliable. Preliminary tests have shown that these films are 

capable of dissipating trapped charges and maximizing the ON state capacitance. 

Research groups from Sandia National Labs [34] and Purdue University [35] have 

suggested the use of amorphous and nanocrystalline diamond (NCD). Amorphous 

diamond films have been used in RF-MEMS switches and their non-charging behavior 

has also been reported. Nanocrystalline diamond is a very new film and little to no 

research has been done in using it as a dielectric film in capacitive switches. The 

complexity involved in the growth process and micromachining has made NCD related 

MEMS a rarity. But considerable improvements in micromachining techniques and the 

superior electrical and microwave properties is making NCD films attract lot of attention 
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in the RF-MEMS area. These charge leaky films provide a conductive path for the 

charges during actuation, thereby avoiding charge trapping and storage. In addition to 

these new films, carbon nanotube based RF MEMS switches [36] have been 

demonstrated. In these switches, double walled carbon nanotubes have been incorporated 

into the switch and the increased reliability due to the high density of the dielectric was 

demonstrated. 

Another standard method to reduce charging is by using bipolar voltage when 

actuating the beams. By using this scheme the electrostatic force which is proportional to 

the applied voltage is maintained constant through the actuation process. Although this 

technique does not entirely remove charge injection into the dielectric, extended test 

results have shown switches having higher reliability through this technique. 

Charging in RF-MEMS switches has been addressed by using a Schottky diode 

with a membrane and semiconductor in place of the usual dielectric layer.  Pillans et al. 

[37] have demonstrated the use of Schottky barrier contact based RF-MEMS switch. In 

this switch, n++ InGaAs is used as the bottom electrode and epitaxial InAlAs is used as 

the dielectric layer. The entire switch was fabricated on an InP substrate, which facilitates 

direct integration with solid state devices. The switch operates as a normal RF-MEMS 

switch under reverse bias conditions and once the charges accumulate, the switch can be 

forward biased to effectively recombine any trapped charges. Figure 2.11 shows the top 

view of the fabricated Schottky switch. 

 

 
Figure 2.11 – Top View of the Fabricated Schottky Contact RF-MEMS Switch [37] 
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In addition to the above stated solutions, charging problems can also be reduced 

by using low voltage actuation schemes (thermal, magnetic and piezoelectric). 

Fabrication complexities and integration issues with these low voltage actuation 

techniques are being addressed to make them viable in future applications. Research 

groups have suggested alternative solutions [38-40] which deal with charging due to 

Frenkel-Poole conduction, mechanical deformation and choice of substrate. These 

methods as claimed by the authors tend to offer better results for charging related studies. 

 

2.4.2 Contact Material Issues  

In DC contact switches the most prevalent failure mechanism is the damage 

created in the contact area of the beam or the electrode as repeated actuation causes two 

metal surfaces to come in contact under low, medium or high power conditions. Damage 

can include pitting and hardening [7] of the metal at these contact areas. Over time the 

repeated contact also reduces the contact area, thereby increasing the contact resistance of 

the switch which is typically between 1-2 Ω under normal conditions. Over time, this 

value starts to increase and can become as large as 7-8 Ω. As demonstrated by 

researchers at Rockwell Science Center, reliability can be increased by controlling the 

actuation voltage in electrostatically actuated switches. By controlling the actuation 

voltage, the impact upon actuation can be reduced thereby reducing the pitting effects.  

 
Figure 2.12 – Cross Section of DC Contact Switch in OFF and ON State [41] 
 

Contact resistance can be controlled by the choice of material used in the fixed 

beams or cantilever structures.  The contact material to be used is dependent on the force 
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required during the actuation scheme. Gold is the most common material used in RF- 

MEMS structures, particularly for low force designs, and the hardness of sputtered and 

electroplated gold is 3 GPa and 1 GPa, respectively [7,44].  For high contact force 

designs, apart from gold the other popular metals are rhenium and gold-palladium alloys. 

There is considerable interest among many to use doped NCD or diamond like carbon 

(DLC) in metal contacts. Although these materials are good choices because of their 

hardness, deposition of these materials on metals in low temperature conditions is still a 

challenge.  

Other failure mechanisms in DC contact switches are related to humidity, 

contamination in contact areas and organic deposits after the fabrication process. Figure 

2.13 (a and b) shows the SEM image of a fabricated tunable inductor. It is seen that there 

are organic deposits around the contact area of the beam; this contamination will result in 

the failure of the cantilever structure during actuation. Contamination related problems 

can be reduced by fabricating and packaging the switches in a clean environment. 

 

       
      (a)      (b) 

Figure 2.13 – SEM Image of DC Contact Switch with Organic Deposits 

  
2.5 Power Handling Capabilities 

Over the years the high power capability of RF-MEMS switches (DC or 

capacitive; shunt or series) has been limited by failures due to self actuation, 

electromigration, latching and Joule heating issues [42-44]. Although considerable 

research has gone into addressing this problem, the long term reliability of the switches 

under high power conditions is still an active area of study. At lower power levels 

Organic 
Deposits 

Deposits Near 
Contact Area 
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(milliwatts) under nitrogen ambience, dry air and vacuum conditions little to no 

difference in the number of cycles under hot or cold switching condition is typically 

observed [7]. Table 2.2 shows the list of the current state of art in high power testing for 

capacitive and DC contact switches [45-48]. 

 

Table 2.2 – State of Art in High Power RF-MEMS Switches 

Research Group Switch Type Testing Conditions 

Lincoln Labs Capacitive 10 Watts cold switching & 

1.7 Watts hot switching 

Raytheon Capacitive 4 Watts cold switching & 

510 mW hot switching 

Radant MEMS DC Contact 10 Watts hot switching 

 

The power handling capability of an RF-MEMS switch depends on the type of 

switch (DC contact or capacitive) and the configuration (series or shunt) in which it is 

fabricated. In most the cases electrostatic actuation is the preferred scheme for high 

power RF-MEMS switches. The DC actuation voltage (Vact) of a bridge can be given by 

[42] 

          
A

kgV
o

act ε27
8 3

=          (2.6) 

Where k is the spring constant, g is the initial height of the bridge and A is the area of 

cross section. An RF signal with a magnitude of VO generates an equivalent DC voltage 

of 

2
O
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V

V =           (2.7) 

And the equivalent input power can be evaluated in terms of the input voltage and the 

input impedance (ZO) 
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When the switch is the up-state, almost zero power gets reflected and the 

minimum power [42] to actuate or rather “self actuate” the switch can be given as shown 

in equation 2.9. This input power causes a force on the metallic plates and if this power is 

sufficiently high, the induced force will be large enough to self actuate the moveable 

membrane.  

        
OO

act AZ
kgP
ε27
8 3

(min) =         (2.9) 

Equations 2.6 – 2.9 apply for a shunt switch. For a series switch, the equivalent voltage 

(Veq) is 2VO. Assuming the same area and spring constant, series capacitive switches are 

capable of handling 1/4th of the power as the shunt switches. Recent improvements in 

designs have shown improvements for designs fabricated in the series configuration, too.  

Another high power handling issue deals with the high current which is 

propagated in the moveable membrane and transmission under high power conditions. 

Electromigration [43] is defined as the movement of metal ions in a conductor upon an 

input electric current. The transmission lines can exhibit this effect, thereby lowering the 

conductivity of the material and increasing the overall loss (degrading performance) of 

the switch. Furthermore, high power levels in capacitive switches also lead to charging 

related issues which can cause the switch to fail. 

In DC contact switches, the contact area typically dissipates 0.5 % of the incident 

power [1]. This dissipation can result in localized heating near or at the contact area. 

Localized heating can subsequently lead to increased contact resistance in the actuated 

state. The increase in contact resistance is due to the bilateral heat current [44] due to the 

high power. Therefore thermal conduction plays an important role in the stable operation 

and reliability of the switch. Thermal constriction conductance (W/K) [44] as shown in 

equation 2.10 is the ability of the contact to dissipate heat through the contact and it is 

dependent on the thermal conductivity of the material (k), the radius of the contact spot, 

and b the radius of the cathode. 
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where Rcd can be defined in terms of the thermal conductivity (k) and a 
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As demonstrated by Hyman et al. [44] samples with large contact area and good 

thermal conductivity exhibit little change in contact resistance up to 50 mA, while 

switches fabricated with low thermal conductivity yield higher contact resistance at 

elevated current and power levels. Damage and material transfer also increase with 

contact force and current level which is the effect of heat conduction.  

 

2.6 Summary 

RF-MEMS switches of different types and configurations have been discussed.  

Lumped element circuit models and small signal simulations using Agilent’s ADS for 

series and shunt type capacitive switches were presented. Different actuation schemes 

that include electrostatic, thermal, piezoelectric and magnetic along with their advantages 

and disadvantages have been discussed in detail. Charging which is the major reason in 

the failure of capacitive switches and the solutions to eliminate or mitigate this effect has 

been presented in detail. Similarly, reliability issues in DC contact switches that include 

material contamination and failure due to high power handling have been discussed. 

Although a multitude of solutions have been analyzed and presented, choosing the best 

method is cost and application dependent.  
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Chapter 3 

Nanocrystalline Diamond – Properties, Growth and Characterization 

 

3.1 Introduction 

Micro-electro-mechanical devices (MEMS) have been fabricated on substrates 

that include silicon, quartz, and glass among others. But these devices are limited in 

applications which require reliability under high temperature and high power conditions. 

Furthermore, MEMS devices unlike integrated circuits (IC’s) involve moveable 

components wherein the mechanical and tribological properties of silicon limit its 

application. Because of these limitations other materials such as SiC, GaN and diamond 

are now under investigation. 

Diamond has been investigated for application to active devices such as field 

effective transistors (FET) for high power electronics as well as for tools used in 

grinding, polishing, cutting, and dicing. Diamond has the highest Young’s modulus, 

hardness and thermal conductivity and it is transparent from the UV to far IR region. 

Furthermore, its superior electronic properties make it suitable for use in heat sinks, and 

radiation detectors [49]. Diamond is chemically inert, stable at high temperature (10000C 

in vacuum) and is suitable for operation in harsh environments (except oxygen ambience) 

[50].  Because of these characteristics diamond is a very good candidate for realizing 

reliable, high power and temperature-stable MEMS and microwave devices.  

Table 3.1 [51, 52] compares the mechanical properties of NCD films with other 

materials used in microsystems technology. Along with positive mechanical attributes 

NCD possesses low loss when used as a thin film at microwave frequencies.  
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Table 3.1 – Mechanical Properties of NCD Thin Films in Comparison to Materials Used 

in Microsystems Technology  

 Si (3c)SiC (6c) SiC (h)GaN Diamond 

Bandgap (ev) 1.12 2.2 2.9  3.45 5.45 

Break down field      

(106 V/cm) 

0.5 4-6 3 3-6 10 

Young’s Modulus (Gpa) 170 450 - 390 1050 

Fracture Strength  (Gpa) 1.37 - - ~2.5 10.3 

Thermal 

Conductivity(W/cm.K) 

1.47 4.9 4.9 1.3 22 

Thermal Stability (0C) 500 900 1300 650 1500 

 

Thin film diamond can be classified into single crystal, microcrystalline (MCD), 

nanocrystalline (NCD) and ultrananocrystalline (UNCD) films. These films are grown on 

different substrates which is dependent on the respective application. In this chapter, 

discussions will be focused on the growth and characterization of NCD films. The 

popular techniques used to grow these thin films along with their chemistry of growth 

and seeding process will be discussed in detail. Finally, mechanical characteristics that 

include Young’s modulus, mechanical resonance frequency and intrinsic stress of NCD 

films will be presented. 

 

3.2 Structure and Growth of Nanocrsytalline Diamond (NCD) 

Diamond has a face centered cubic crystal (FCC) lattice structure with a unique 

arrangement of carbon atoms with eight corner atoms, six face centered atoms and four 

other atoms from adjacent interpenetrating lattices offset by one-quarter of the body 

diagonal as shown in the ball and stick model of Figure 3.1 [53]. Each of the carbon 

atoms is covalently bonded to four nearest neighboring atoms by σ bonds resulting in a 

strong sp3 character. The (111) planes of the diamond are along the bond direction with a 

lattice constant (a0) of 3.567 Å and a bond length of 1.54 Å. Due to this unique chemical 
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bonding, and atomic density of 1.76 X 1023 cm-3, diamonds possess several extraordinary 

material properties. 

 
Figure 3.1 – Crystal Structure of Diamond Lattice [53] 

 

Chemical vapor deposition (CVD) involves the dissociation of chemical species 

in a vapor phase to form a coating or a thin film. Thin film diamond is generally grown 

through a CVD process. The growth process in diamond films can be initiated by adding 

one carbon atom to its initial template. Subsequent addition of these carbon atoms result 

in a tetrahedron bonded carbon network. CVD growth process of a diamond film can be 

broken down into the following steps [54]:  

• A gas phase must be activated, either by a high temperature (ex: hot-filament 

CVD) or by plasma excitation (ex: microwave CVD). 

• The gas phase must contain carbon-containing species such as hydrocarbon, 

carbon dioxide or carbon monoxide. 

•  A sufficiently high concentration of atomic hydrogen to etch graphite and 

suppresses gaseous graphite precursors must be provided.  

•  The substrate must be seeded to initiate the nucleation and growth of 

diamond from the vapor phase.  

•  A driving force must exist to transport the carbon-containing species from the 

gas phase to the surface of the substrate. In most CVD methods, the 

temperature gradient acts as a driving force for the motion of diamond-

producing species via diffusion. 
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Thin film NCD is grown through a chemical vapor deposition (CVD) process 

wherein the growth occurs by the decomposition of carbon containing precursor 

molecules (typically methane) in either a pure hydrogen, or hydrogen and argon 

environment. NCD growth is done through a thermal (hot filament) [55], plasma 

(microwave or RF) [56] activation or use of a combustion flame (oxyacetylene). Of the 

three, hot filament and microwave plasma methodologies are the most popular techniques 

used for thin film diamond growth.  

Prior to diamond growth, the wafer needs to go through a seeding step which aids 

in the growth of the thin film. Seeding is popularly done through three different 

techniques: 

• Mechanical polishing of the wafer: In this technique nanometer sized diamond 

powder is sprinkled on the silicon wafer and the wafer is mechanically 

scratched. By this the diamond powder is spread uniformly across the wafer 

and this acts as a seeding layer in the CVD system. Seeding through this 

method results in a nucleation density of 107cm-2 [57]. 

• Ultrasonication: Here a silicon wafer is suspended in slurry of nanometer 

sized powder with acetone or methanol for 20-30 minutes. Through this 

process the surface of the wafer is damaged and seeded with the diamond 

powder for the subsequent growth process. Nucleation density of 106 – 1010 

cm-2 is achieved through this method [58]. 

• Bias Enhanced Nucleation (BEN): Although the first two processes are 

popular and result in good diamond films, nucleation density is best in the 

BEN process [59]. In the microwave plasma enhanced CVD (MPECVD) 

process, prior to growth, in the BEN stage the substrate is negatively biased at 

around 250 volts resulting in a starting current value of 10mA. The current 

increases and saturates at 100mA (Figure 3.2) in a half hour seeding 

procedure, beyond which the current tends to decrease with time. Nucleation 

density achieved through this procedure is around 1015 cm-2.  



www.manaraa.com

 31

-5 0 5 10 15 20 25 30
20

40

60

80

100

120

140

Bi
as

 C
ur

re
nt

 (m
A)

Bias Time (min)
 

Figure 3.2 – Varying Current Value in Time During the BEN Process  

 
In this work, diamond films grown by the hot filament (HFCVD) method are used 

in the MEMS actuators and the microwave plasma (MPECVD) films are used in the 

shunt switches. The growth recipes used at the University of Ulm (hydrogen chemistry) 

and at the University of South Florida (argon chemistry) for intrinsic NCD are given 

below: 

 

Table 3.2 – Growth Recipe for NCD Films Using Hot Filament (HFCVD) and 

Microwave Plasma (MPECVD) Process 

Gas Flow (sccm) Growth Process 

Ar H2 CH4 

Total 

Pressure 

(Torr) 

Substrate 

Temp. 

(0C) 

Power (kW) 

Hot Filament 

CVD (HFCVD) 

– 200 3 12 – 15 850 2.4 – 2.8  

Microwave 

Plasma CVD 

(Ulm MPECVD) 

– 400 – 500 4 – 8 15 800 – 850  2.4 

Microwave 

Plasma CVD 

(USF MPECVD) 

788 8 4 135 725 1.8 
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Diamond films grown in the HFCVD technique use bias enhanced nucleation 

(BEN) as the seeding method. The HFCVD technique is based on the heating of metal 

filaments up to 2000°-2200°C in order to break molecular hydrogen and carbon 

compounds and to form CyHx free radicals; these free radicals move toward the substrate 

by a temperature gradient. On the substrate surface both diamond (sp3) and graphite (sp2) 

bonds are formed; the graphite bonds are etched by atomic hydrogen allowing diamond 

growth on the substrate surface. Figure 3.3 shows the SEM image of a diamond film 

grown in the HFCVD reactor. 

 

 
Figure 3.3 – SEM Image of a NCD Film Grown by the HFCVD Technique 

 

In the MPECVD technique, a C2 dimer-based growth mechanism that would 

result in nanocrystalline structure was proposed [60]. In the films deposited using 5% 

CH4 and 95% Ar, the C2 dimers resulted in the inclusion of an amorphous carbon or 

graphitic carbon [61]. Such non-diamond forms of carbon are due to the homogenous 

nucleation resulting from a high ratio of hydrocarbon to carbon dimers. But on the other 

hand, during the deposition of nano-diamond films, the heterogeneous nucleation rate 

(>1010 cm2sec-1) increases due to highly reactive C2 species, resulting in the smaller grain 

size of the diamond films [63]. According to the proposed model, the feed gases methane 

and argon disassociate and favor the formation of (C2H2)+ at a low ionization potential. 

The positively charged acetylene radical attracts an electron to form a highly reactive 

carbon dimer and hydrogen. Hydrogen is then desorbed away while the carbon dimers 

nucleate at the reconstructed surface. As the reaction continues, the number of carbon 
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dimers in the plasma increases and they join the previously hybridized carbon atoms. In 

this way, a closely hybridized sp3 network of carbon atoms forms a continuous film of 

nanocrystalline diamond. 

The limited applications of microcrystalline diamond (MCD) films have been 

surpassed by synthesizing a new class of material known as “nanocrystalline diamond” 

(NCD) films. The nanocrystalline diamond films can be grown by altering the CVD 

process [64, 65].  Unlike MCD, NCD films consist of small grains on the order of 20-50 

nm and a low surface roughness of ~20 nm.  Recently, “ultra-nanocrystalline diamond” 

(UNCD) films having smaller grain size (3-5 nm) than NCD have been developed [66]. 

The growth of NCD/UNCD films opened wide windows of applications ranging from 

tribology, MEMS, optics, RF applications and field emission devices [67-69]. Typically, 

MCD films are deposited in CH4 (1%)/H2 (99%), NCD films are deposited in CH4 

(1%)/Ar (98%)/ H2 (1%) and UNCD films are deposited in CH4 (1%)/Ar (99%) gas 

chemistries. Microcrystalline diamond films consist of large grains (grain size: ~ 5-10 

µm) and rough surfaces (mean surface roughness: ~ 300-700 nm) thereby limiting their 

application to cutting tools, abrasive coatings and heat sinks [14-16].  

The intrinsic diamond films are electrically insulating with resistivity on the order 

of 1013- 1016 ohm-cm. Electrical conductivity can be achieved by doping the films during 

the deposition. The diffusion of dopants into the diamond films is not a practical method 

of doping as the surface is not diffusive to most of the impurities. Though there are a few 

reports on the ion-implantation of diamond films [70], it is an expensive technique and 

can damage the surface. Therefore, dopants such as boron (p-type), nitrogen, 

phosphorous and sulphur (n-type) are incorporated in the gas chemistry during the growth 

[71]. The most widely used dopants are boron (p- type) and nitrogen (n-type), as these are 

readily soluble with diamond. It was observed that the quality of the films improve with 

the incorporation of trace amounts of boron by reducing the point defects. But excess 

concentration of boron promotes graphitization due to the incorporation of boron 

interstitial sites. In the case of single crystal or microcrystalline diamond, p-type 

conductivity can be easily achieved. But, it is difficult to obtain n-type conductivity at 

room temperature in these films as nitrogen forms a deep donor (~1.7 eV). Nitrogen 
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forms a shallow donor level (~ 0.4 eV) [72] in NCD/UNCD films and results in high n-

type conductivity (~143 Ω-1 cm-1). The drastic reduction in the grain size of the diamond 

films from several microns to few nanometers by changing the gas chemistry suggests 

that the growth mechanism of nanocrystalline diamond films is different from 

conventional CVD diamond films. Boron is the most common and preferred p-dopant 

and the doping mechanism are well established both in the HFCVD and MPECVD 

techniques [73]. Nitrogen doped diamond films are available using MPECVD technique 

whereas HFCVD films with nitrogen doping are still in the process of being matured.  

 

3.3 Characterization Techniques for NCD Films 

Unlike the microcrystalline diamond films, NCD films deposited in hydrogen 

poor gas chemistry have a complex grain boundary structure with grain size on the order 

of few nanometers. These differences in the grain structure result in different mechanical 

and electrical properties of NCD films. The structural, mechanical and electrical 

properties of these films have been studied by several analytical and metrology 

techniques.  

Scanning electron microscopy (SEM) has been a very useful technique in the 

characterization of diamond thin films. The microstructure of diamond films changes 

dramatically with the continued addition of Ar to reacting gas mixtures during CVD 

process. The transition from micro- to nanocrystalline by systematically adding argon to 

hydrogen-rich plasma has been characterized by SEM micrographs as a function of argon 

content shown in Figure 3.4. Different combinations of gas mixtures have been used.  
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          (a)           (b) 

Figure 3.4 – SEM Images of Diamond Films Grown with Different Ar Ratios (a) 50% 

and (b) 98% 

 

Raman spectroscopy [74] is a powerful technique to determine the chemical and 

structural properties of liquid or solid materials by a simple non-destructive and non-

contact method of measurement. In the case of Raman spectroscopy of carbon based 

materials, the scattering is about 50 times more sensitive to π-bonded amorphous carbon 

and graphite than to the phonon band of diamond. Hence, this method can be used to 

establish the crystalline quality of diamond thin films by estimating the amount of sp2 

bonded carbon in the films. Lin et al. [75] performed the analysis of diamond films 

grown with Ar/CH4/H2 plasmas with different gas mixtures. For films grown without Ar, 

a sharp diamond characteristic peak is observed at 1332 cm-1. No scattering can be found 

in the range from 1400 to 1600 cm-1 suggesting that the diamond film contains very little 

sp2 bonded carbon. With addition of argon to the reactant gas up to 92%, a sharp diamond 

peak still exists indicating the presence of microcrystalline diamond grains. The typical 

spectrum of a single crystal diamond, highly ordered pyrolytic graphite (HOPG), 

microcrystalline diamond and nanocrystalline diamond are shown in Figure 5 (a-d) 

respectively. Apart from Raman spectroscopy, near edge X-ray absorption fine structure 

(NEXAFS) is another popular technique for characterizing diamond films. This technique 

is used in identifying the percentage of sp2 and sp33 bonded carbon in the thin film. 
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Figure 3.5 – Raman Spectra of Carbon Based Materials [54] 

 
3.4 Mechanical Characteristics of NCD Films 

In order to improve the reliability of micromachined devices, it its very important 

to understand the mechanical properties of the thin film used to fabricate them. Amongst 

others, Young’s modulus, intrinsic stress and the parameters affecting it, and fracture 

strength determine the performance of the devices. In this section, the different 

characterization techniques used to measure these properties will be discussed in detail. 

 

3.4.1 Young’s Modulus 

According to solid mechanics, Young’s modulus (E) is a measure of the stiffness 

of an isotopic elastic material [76]. It is defined as the ratio of the uniaxial stress over 

uniaxial strain in the range of stress in which the Hooke’s law is valid. In electrostatically 

actuated RF-MEMS switches, the actuation or threshold voltage is dependent on the 

spring constant of the material. For thin, long cantilevers with small air gaps, the spring 
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constant is associated with a small reset force which in turn affects the release of the 

structure when switched off. Under such circumstances, it is preferable to use a stiff 

material with a high Young’s modulus. Stiction of the moveable membrane due to 

dielectric charging in capacitive switches can be mitigated by using such stiff material. 

Theoretically, diamond possesses the highest Young’s modulus among all solid materials. 

The values of 1150 GPa and 960 GPa have been reported for NCD and UNCD films, 

respectively [77]. Furthermore, the Young’s modulus of diamond is very stable at 

elevated temperature (7000C) which makes it far superior to other materials.  

Young’s modulus can be measured using different techniques and in this work it 

is determined by cantilever resonance measurements [77]. In this technique, diamond 

cantilevers of different lengths and widths are fabricated and the first order mechanical 

resonant frequency is measured using a piezo oscillator. First, boron doped NCD film is 

grown on a low resistive silicon substrate to a thickness of 1.2 μm. Titanium is patterned 

and used as a hard mask to etch the NCD film. Diamond is then etched in a RIE system 

and subsequently released by etching the silicon layer by CF4 plasma. The entire wafer is 

then diced wherein individual diamond cantilevers with varying lengths are stuck to a 

commercially available piezo crystal oscillator using epoxy. Figure 3.6 (a) shows the 

SEM image of the diamond cantilevers of different lengths grown in the HFCVD 

technique and Figure 3.6 (b) shows the SEM image of the released diamond cantilever 

grown in the MPECVD technique. It is evident from these SEM images, that films grown 

using both techniques have an intrinsic stress that builds up during the growth process.   

 

             
   (a)        (b) 

Figure 3.6 – SEM Image of Released Diamond Cantilever (a) Using HFCVD, and (b) 

Using MPECVD Technique 
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A function generator is used to measure the first order mechanical resonant 

frequency. The released diamond cantilevers are attached to a commercial piezo crystal 

which is in turn connected to the function generator. The first order resonant frequency is 

observed through a microscope as the tip of the cantilever starts to vibrate at the highest 

center frequency value. The mechanical resonant frequency is dependent on the length 

and width of the structure and on the thickness of the film and can be evaluated given in 

equation 3.1 [77] 

                                               2
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In this experiment, the measured resonant frequency is used to evaluate the Young’s 

modulus of the diamond film. Table 3.2 gives the details of the measured resonant 

frequency and evaluated Young’s modulus for cantilevers whose width is 40 μm and 

thickness is 1.2 μm. 

 
Table 3.3 – Measured Resonance Frequency and Young’s Modulus for Diamond 

Cantilevers 

Length of 

Cantilever 

Measured Resonant 

Frequency 

Young’s Modulus 

from Measurement 

100 μm 326 KHz 1015 GPa 

300 μm 82 KHz 1010 Gpa 

 

3.4.2 Intrinsic Stress 

Reliable MEMS devices can be fabricated by understanding the stress conditions 

that develop during the deposition (sputtering, evaporation and CVD) process. Stress in 

NCD films can vary widely (-500MPa to + 700 MPa) depending on the growth 

parameters that include pressure, substrate temperature and gas ratio. There are various 

techniques which are available to measure the compressive and tensile stress in the film 

[78-80]. In this work, the rotation tips are used to measure the compressive stress in NCD 

films wherein the strain is converted into a rotation angle which is directly proportional to 

the strain caused in the material. Although this technique can be used for measuring both 
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kinds of stresses (tensile and compressive), our discussion is only focused on 

compressively-stressed NCD structures. Measured values show compressive stress 

ranging from 140 MPa to 557 MPa for a 1.2 µm thick film is measured. Figure 3.7 shows 

the SEM images of the rotation tip structures used for measuring the stress. 

 

                 
Figure 3.7 – Released Structures Used for Measuring the Intrinsic Stress in Diamond 

Films 

 
Micromachined structures tend to elongate or shorten depending on the stress 

which builds up during the growth process. The cantilever structures studied in this work 

are compressively stressed resulting in an elongation of the short beams upon release. 

This elongation on either side causes the beam to change its angle (rotation). The 

difference in the distance between the two long beams is used to evaluate the strain using 

equation 3.2 [80]. Considering the rotational points to be ideal, the structure can be 

represented as shown in Figure 3.8. As shown in the figure, LA and LB correspond to the 

length of the stationary beam, LC is the length of the moveable beam, W is the width of 

the moveable beam O is the distance between the turning points.  
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Figure 3.8 – Cantilever Structure Used to Evaluate Intrinsic Stress 

 

Figure 3.9 shows the geometry used to calculate the rotation angle for measuring 

the strain in the film. Equation 3.2 is used to evaluate the strain with respect to the 

stationary arm. This equation is derived under the assumption that the width of the 

moveable arms is much smaller than the stationary arms (LA and LB). 

( )
( )BA LL
O

+
=

αε tan*"
                                              (3.2)  

 
Figure 3.9 – Geometry Used to Evaluate the Rotation Angle to Calculate Strain (ε”) 

    



www.manaraa.com

 41

The deflection caused by the moveable arm LC can be defined in terms of the rotation 

angle as shown in equation 3.3. 
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From equations 3.2 and 3.3, the overall strain can be represented in terms of the 

deflection as shown in equation 3.4 
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Figure 3.10 shows the SEM image of the moveable arms which have vertical 

displacement due to the compressive stress in the growth process. 

 

 
Figure 3.10 – SEM Image of the Released Cantilevers with Intrinsic Stress 

 

This equation, which shows the linear relationship between strain and deflection, 

can be used for both tensile and compressive stress measurements. The only limitation 

with this technique is that the distance between the turning points (O) must be not smaller 

than a value which results in stiffness that thwarts the movement of the arms. Table 3.3 

shows the measured stress value (as a function of strain) of a 1.2 μm intrinsic diamond 

film for various lengths of the stationary and moveable arms. The Young’s modulus for 

these measurements is assumed to be ~ 1020 GPa. 
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Table 3.4 – Measured Intrinsic Stress of a 1.2 μm NCD Film 

LA & LB 

(μm) 

LC (μm) O  (μm) 2Y (μm) Stress (ε’) 

MPa 

33 76 8.27 0.305 243 

33 76 8.27 0.35 279 

50 95 11 0.51 285 

50 95 11 0.47 262 

 

Stress during the growth process is dependent on many parameters like pressure, 

temperature and gas mixture ratio.  In the HFCVD technique, films with high 

compressive stress can be achieved at higher pressure and temperature. Although a 

thorough mathematical model cannot be derived, Figure 3.11 shows the compressive 

stress that can be achieved with varying temperature and pressure conditions. 

Furthermore, stress distribution is generally uniform over a 1 inch radius of a 4 inch 

wafer. The uniformity in the stress distribution is a direct result of the homogeneity of the 

diamond film during the growth process. Figure 3.12 shows the stress distribution in the 

diamond film for a 4 inch wafer. 
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Figure 3.11 – Measured Intrinsic Stress with Varying Temperature and Pressure 

Conditions 
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Figure 3.12 – Measured Compressive Distribution Across a 4-inch Wafer 

 
3.5 Summary 

Growth of NCD films using MPECVD and HFCVD techniques has been 

presented. The effect of using different seeding techniques on the quality of the diamond 

films have been presented with examples. The growth process involved in diamond films 

using hydrogen and argon chemistry has been discussed in detail. Mechanical properties 

of the diamond films that include Young’s modulus, mechanical resonant and intrinsic 

stress have been measured. Furthermore, the effect of process parameters (temperature, 

gas ratio and pressure) on the mechanical properties of NCD films was described with a 

mathematical model wherein intrinsic stress measurements and the factors affecting this 

intrinsic stress were studied in detail. 
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Chapter 4 

Thermal and Dual Actuation Nanocrystalline Diamond Bridges and Cantilevers 

 

4.1 Introduction 

Radio frequency micro-electro mechanical systems (RF-MEMS) technology has 

been growing rapidly in the last few years and has found a multitude of applications in 

the automotive, defence and communication industries. Due to their outstanding 

properties and excellent performance at high frequencies, RF-MEMS devices have 

started replacing their solid state counterparts in filters [81], phase shifters [82] and 

antennas [83]. According to a 2006 market study, the global market for MEMS, with RF-

MEMS being a major part will reach $12 billion by 2010 [84]. Although they are small in 

size and exhibit low parasitic losses, the monolithic configuration confines the device to a 

substrate common to the entire system.  Furthermore, power handling [38] capabilities of 

RF-MEMS devices have been limited due to using all metal structures in the devices. 

Diamond has long been used in active devices such as FETS for high power electronics 

[85]. Also its stability under high temperature makes it a very good candidate for 

realizing reliable, high power and temperature stable RF-MEMS and microwave devices. 

The outstanding mechanical properties of nanocrystalline diamond (NCD) thin films and 

its low loss at microwave frequencies can be used to produce mechanically stable and 

high power RF-MEMS devices 

In this chapter, the life cycle of a thermally actuated NCD bridges and cantilevers 

will be presented. The diamond actuators are designed to operate in a bi-stable mode. 

Design equations realizing the thermal actuation scheme and simulation results which 

facilitate the bi-stable operation will be discussed. The overall design of the actuator and 

the choice of material will also presented. Fabrication steps along with the solid-liquid 

interdiffusion (SOLID) process used for integrating the actuator will be discussed in 

detail. Small signal measurements are carried out in the frequency range of 1-30 GHz and 
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compared with the simulation results, which are performed using Agilent’s Advanced 

Design System (ADS). Finally, high power measurements of the switch integrated in the 

microstrip topology will be presented. In addition to thermally actuated switches, a dual 

mode switch which combines thermal and electrostatic actuation schemes is also 

discussed. The fabrication and measurement results of this switch are also presented. 

 

4.2 Design of the NCD Actuator 

The NCD actuator is made of boron doped diamond film which is grown through 

a hot filament CVD process. Figure 4.1 shows the design of the NCD actuator. The 

diamond bridge is 1200μm long, 300μm wide and 1.5μm thick. The diamond film used 

in the actuator is grown to purposefully achieve compressive stress of ~ +300 Mpa. The 

parameters involved in achieving these stress values have been discussed in Chapter 3. 

The resistivity of the boron doped NCD film is ~ 1mΩ-cm. In addition to the fixed-fixed 

bridges, NCD based cantilevers (500μm, 1000μm in length) were also designed.  

 
Figure 4.1 – Design of the Thermally Actuated NCD Bridge 

 

The bridges are thermally actuated using a bi-metal actuation scheme [86]. 

Compared to electrostatic actuation, thermal actuation has the advantage of having a 

lower actuation voltage and a higher contact force. The main drawback of thermal 

actuation is the static power consumption, which can be avoided by using a designing the 

actuator to operate in a bi-stable mode. Copper which is used to facilitate the thermal 

actuation scheme is deposited on top of the doped diamond thin film. In addition to the 
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actuation pads, copper is also used in the contact pads of the actuator. The difference in 

the coefficient of thermal expansion between the two materials (0.8·10-6/K for diamond 

and 13·10-6/K for copper) results in resistive heating of the doped areas.  This resistive 

heating effect causes the diamond actuator to bend thereby switching to the actuated 

state. . The pull-in voltage (and current) to switch the bridge depends on the geometry of 

the diamond heating elements.  

Figure 4.2 (a) and Figure 4.2 (b) show the top view of the different actuator 

designs. These designs were optimized in ANSYSTM to achieve the best performance in 

terms of bending moment, deflection and ease of integration. Gold wirings are included 

in the design to provide a DC electrical path to the contact pad at the center of the 

diamond bridge. The contact pads are 100 μm x 100 μm in dimension. 

 
Figure 4.2 – Top View of the Diamond Actuator with Different Copper Heating Elements 

 

As explained in Chapter 3, the buckling effect in the beam is obtained by 

optimizing pressure, gas composition and temperature during the NCD growth. This 

buckling effect can also be explained through a mathematical formula. According to 

theory of beam mechanics analysis, a straight beam can be axially compressed to yield 

buckled stable positions depending on the nature (axial or lateral) and position (extreme 

or center) of the load. A straight beam which is subjected to an axial load p can be 

represented as [79] 
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where w is the lateral displacement of the beam, E is the Young’s modulus of the beam, 

and I is the moment of inertia of the beam. By assuming fixed boundary conditions at 

both ends and normalizing the axial force equation 4.1 can be represented as 
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where A, B, C and D are constants. The compressive force generated can be categorized 

into various modes and the buckling caused in the beam can vary depending on the force 

generated (F) at each mode. Initially, the beam is straight, if the compressive energy (EC) 

generated is less than beam bending energy (EBB). As the compressive force changes 

(F=F1), EBB is greater than EC, and this results in buckling of the beam. The buckling 

effect in the first mode increases the overall length of the beam thereby lowering the 

compressive force. Figure 4.3 shows this buckling effect of the beam. 

     (a)       (b) 

Figure 4.3 – Stages in a Straight Beam which is Compressively Stressed (a) EC is Greater 

than EBB and (b) EBB is Greater than EC 

 
Mechanical simulations were performed in ANSYSTM to optimize the length of 

the beam to achieve the bi-stable condition. Figure 4.4 shows the simulated contact force 

for double anchored cantilevers of different lengths versus the separation distance 

between the actuator and integrated substrate. 
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Figure 4.4 – Simulated Force vs Distance of Separation Between Actuator and Host 

Substrate 

 

Many aspects have to be taken into account while designing the bridge. Intrinsic 

stress, thickness of the diamond layer and the length of the beam determine the buckling 

effect. Furthermore, these parameters together with the separation between the beam and 

the base plate influence the magnitude of the force, which is generated against the base 

plate. At the point A (near 6 μm), the force is zero, since the beam is completely released 

and just touches the base plate. When the separation is reduced, the cantilever is in 

contact and generates a center force on the base plate. This force increases with 

decreasing separation and reaches a maximum, at 3.4 μm (point B), before it drops 

immediately back to zero. At point C (~ 3 μm) the beam can no longer reach the lower 

stable state; the beam flips back and becomes mono-stable. For very long beams the 

center force decreases steadily from its maximum, because an s-shaped quasi-stable 

interstate appears before it becomes mono-stable. Although both 1000μm and 1200 μm 

long beams gave satisfactory results, the longer beam was chosen to accommodate the 

copper heating elements for better actuation. In thermal actuation, the amount of thermal 

expansion for a material can be given by 
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where T0 and T1 are the lower and upper temperature limit respectively, and αth is the 

coefficient of thermal expansion.  The expansion εth and the strain produced varies as a 

function of temperature wherein ΔT is the change in temperature, σx is the stress and E is 

the Young’s modulus.  εth and strain (ε”) can be represented as 
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In the bridge or cantilever structure, the generated thermal strains in both 

materials (NCD and copper) are converted into intrinsic stress leading to a bending 

moment. This in turn leads to the deflection of the actuator. According to Hooke’s law 

[87], stiff materials that possess high Young’s modulus lead to high stress values. For this 

a proper figure of merit for thermal stress generation is the product of E and αth. Upon 

heating, the bending moment caused by the material is dependent on its Young’s modulus 

(E), thickness, length and width. To achieve the maximum bending moment the product 

of the E and αth of NCD should be different (lower or higher) than the other material. 

Table 4.1 shows the E, αth and their product for different materials as compared to that of 

NCD. It is seen from this table that a combination of copper and NCD is nearly ideal for 

the thermal actuation scheme, second only to the copper-Ni combination. 

 

Table 4.1 – Comparison of Young’s Modulus (E) and Coefficient of Thermal Expansion 

(αth) for Different Materials 

Property NCD Cu Ni Au Al 

Young’s Modulus [GPa] 1050 130 210 78 70 

CTE (αth) [ppm/C] 0.85 17 13 14 23 

E*αth 840 2210 2730 1092 1610 
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In the first iteration of the design, nickel was used as the heating element. 

Although the product of E and αth is higher in nickel than copper, Cu was preferred for 

because fewer fabrication steps are required and the integration process is simplified. 

Figure 4.5 show the operation of the actuator in the down-state and up-state, respectively. 

The up and down movement of the actuator is dependent on the heating of the individual 

copper heating element placed on top of the doped diamond film. The corner two blocks 

are used to push the bridge down and the center block is used to bring the bridge back to 

the up-state. As mentioned earlier, the actuator is designed to be bi-stable, and hence the 

design must accommodate heating elements for transforming the bridge between both 

states. 

 
Figure 4.5 – Bi-Stable Layout of the Actuator with Individual Copper Heating Elements 

 

4.3 Fabrication  

The diamond bridges are fabricated on a 500 μm thick low resistivity silicon 

wafer. Prior to the 2nd generation design a diamond actuator was fabricated in which the 

bridge was composed of intrinsic diamond with areas of selectively grown doped 

diamond. The doped diamond bridge was chosen so that resistance of the heaters can be 

lower without actually making the bridge thicker and stiffer. Furthermore, the first 

generation switches included nickel to facilitate the thermal actuation scheme. The 

fabrication steps as shown in Figure 4.6 are as follows: 

• The silicon wafer is nucleated by BEN (bias enhanced nucleation) and an 

intrinsic diamond layer of 1500Å thickness is grown through a microwave 

plasma assisted CVD process. Boron doped diamond (p-type) is later grown 
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with HFCVD (hot filament CVD) to a thickness of 8500 Å. This boron doped 

diamond is the heart of the micromachined actuator. 

• Intrinsic diamond is selectively grown using a SiO2 mask. The 4000 Å thick 

diamond layer is used for electrical isolation of the contact areas while 

actuating the bridges.  

• A Cr/Au seed layer of 700Å is deposited using an ion beam reactor after 

which a 1 μm thick copper film is deposited by electroplating to serve as the 

bi-metal for thermal actuation.  

• Copper pads which are used to integrate the diamond switches onto the host 

substrate are electroplated to a thickness of 12μm. The RF contact areas are 

also formed by electroplating in this step. 

• The previously deposited seed layer is patterned to provide electrical 

continuity to actuate the bridges. 

• 400 Å of platinum is patterned over the copper contact area using lift-off 

technique.   

• Diamond bridges are then etched in a RIE system using titanium as the hard 

mask 

• Finally, using patterned silicon dioxide as a backside hard mask, diamond 

structures are released from the silicon wafer through a DRIE process 

resulting in a free standing diamond bridge that is embedded in a silicon 

frame. 
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Figure 4.6 – Fabrication Procedure of the Nanocrystalline Diamond Actuator 

 

Figure 4.7(a) and 4.7(b) shows the front view and the back view of the fabricated 

diamond actuator. The overall size of the entire chip is 1600μm long and 900μm wide. 
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Figure 4.7 – Microphotograph of the Fabricated Diamond Actuator (a) Front View (b) 

Back View with the Silicon Frame 

 

After the release process, each actuator (with the frame) is individually diced 

using a dicing saw. To avoid any damage the released actuators are glued onto a 3-4 inch 

silicon substrate. After dicing, they are cleaned in acetone and methanol to remove the 

glue. These diamond actuators, being embedded in the silicon frame, are substrate 

independent and can be integrated onto any microwave substrate that can withstand the 

high-temperature SOLID process [88]. Figure 4.8 shows the integration process of the 

diamond actuator to the host substrate in the CPW topology. In addition to CPW 

switches, the actuators are integrated to realize tunable CPW inductors and tunable 

switches in the microstrip topology. 

 
Figure 4.8 – Diamond Actuator Integrated onto a Host Substrate (Alumina, Aluminum 

Nitride) Using SOLID Process 

Contact Area Copper Bi-metal

Gold wiring Silicon Frame Copper Pads

Diamond Bridge

Silicon Frame

(a ) (b )



www.manaraa.com

 54

In addition to the copper pads in the actuator frame, copper pads along with tin 

should be included in the host substrate for integration.  Solid–liquid interdiffusion 

occurs between the two phases, resulting in a phase transformation of the liquid 

component to a higher melting point material, which is strong enough to serve as a bond 

and withstand elevated temperatures. Copper-Tin has been considered a SOLID [88] 

couple where tin acts a melting phase and copper as a solid phase. While integrating, the 

copper pads on the actuator are kept on top of the copper-tin stack and heated till 2500C 

(melting point of tin). During the diffusion process one of the inter-metallic compounds 

forms the bond between the two structures and is stable till 6000C. The alignment is 

carried out in a flip-chip bonding test setup wherein an accuracy of + 5 microns is 

achieved during the integration.  Heating for the solder process is supplied from the 

actuator part to prevent alloying of the pads that are located on the host substrate. Figure 

4.9 shows the phase transformation in the SOLID process. Apart from Cu/Sn the other 

popular metal combinations are Ag/In, Au/Pb and Au/Sn.  
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Figure 4.9 – Phase Transformation in the Cu-Sn SOLID Process 

 

In the second generation switches, tin was included in the actuator part instead of 

the host substrate. This approach was chosen for better yield in the tin electroplating 
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process due to fabrication limitations. Figure 4.10 shows a microphotograph of the 

integrated switch with the host substrate. The four outer rectangles are copper blocks 

used for biasing the switches.  

 
 

Figure 4.10 – Integrated Switch with a Host Alumina Substrate in a Microstrip Topology 

 
4.4 Small Signal Analysis of the CPW Integrated Switch 

The diamond actuators are used to realize RF-MEMS DC contact type switches in 

CPW and microstrip topologies. The CPW transmission lines are designed on a 650 μm 

thick alumina substrate (εr=9.9, tanδ=0.0002). The transmission lines are 3000 μm long 

with a center conductor width (W) of 100 μm and slot width (G) of 50 μm. The center 

conductor of these lines is purposefully interrupted in the middle resulting in two 

transmission lines which are 1475 μm long. During actuation, the contact pad in the 

diamond bridge closes this gap resulting in a continuous transmission path.  

Small signal measurements were done in the frequency span of 1-30 GHz using 

an Anritsu Lightning VNA. A bias tee was used to protect the VNA test ports from DC 

current. Before measuring the structures a probe-tip SOLT calibration is performed on a 

commercial GGB CS-9 calibration. The diamond bridges are thermally actuated at 2 volts 

and upon actuation the platinum coated copper pad makes contact with the CPW line. 

Small signal simulations were performed using ADS Momentum, a 2.5 D 

electromagnetic simulator. Figure 4.11 and Figure 4.12 show the comparison between the 

simulated and measured S11 and S21 in the non-actuated and actuated states for the CPW 

integrated switch, respectively. The return loss and insertion loss in the actuated state are 
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20 dB and 0.2 dB, respectively, at 20GHz. It is evident from the S-parameters that in the 

actuated state, the diamond bridge makes a very good contact with the transmission line 

with a contact resistance of ~ 0.8 ohms. 
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Figure 4.11 – S-Parameters of the CPW Integrated Actuator in the Non-Actuated State 
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Figure 4.12 – S-Parameters of the CPW Integrated Actuator in the Actuated State 

 

4.5 Small Signal Analysis of the CPW Inductor 

Inductors are integral components in RF front end architectures that include 

filters, matching networks and tunable circuits such as phase shifters.  The most common 
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inductor topologies include planar spirals, air-core, and embedded solenoid designs [7]. 

In comparison to capacitors, however, relatively few tunable inductor configurations have 

been published, and among those presented many are hybrid approaches that employ 

(MEMS) switches to activate different static inductive sections. Furthermore, less 

attention has been paid to designs that enable control in the sub-nH range as is potentially 

desirable for matching purposes in applications that use distributed loading of small 

capacitances, e.g. in loaded-line phase shifters [7]. 

From transmission line theory, narrow or thin high impedance transmission lines 

are analogous to inductors. The inductance value is dependent on the width and length of 

the line. Generally speaking the net inductance value increases with an increase in length 

and decrease in width. In addition to implementing the devices as a simple RF switch, 

tunable inductors were realized wherein the non-actuated and the actuated-state of the 

bridges yield different net inductance values [89]. The inductor circuits fabricated on the 

alumina substrate are 400 μm long.  Figure 4.13 shows the inductor layout along with the 

integrated diamond bridge.  

 

 
Figure 4.13 - Design of the Integrated CPW Inductor and Diamond Actuator 

 

The geometry of the transmission line is a crucial factor in determining the net 

inductance value in the non-actuated (Lhigh) state and in the actuated state (Llow) of the 

inductor. The inductors are designed such that the characteristic impedance of the feed 

lines is close to 50 Ohms. The impedance value of these feed lines is a function of the 

center conductor width and slot width. In this work, the center conductor width (w) and 
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slot width (s) is 270 μm and 115 μm, respectively. The overall length of the inductor 

circuits is approximately 400 µm. Although the inductance value can be increased by 

making the center conductor narrower, processing limitations restricted the minimum 

width to 30 µm. These CPW lines are designed in a way that the effective inductance 

value (Leff) is much greater in comparison to the capacitance in the transmission line. The 

inductance value for all the designs is controlled by the fixed-fixed beams, wherein the 

Leff values differ with the actuated and non-actuated state of the beam. The inductors are 

designed to have a high inductance value when the beams are up and low inductance 

value in the actuated state of the beams. When the beams are in the non-actuated (up) 

state, the circuit offers high impedance (Zh) to the input signal. Since the length of the 

device is electrically small (0.075λ at 25GHz) the topology effectively emulates a 

lumped inductor with high inductance value (Lhigh).  In the down-state the inductance 

value (Llow) reduces due to the decrease in the effective characteristic impedance (Zl). 

The inductance ratio (Lratio) is directly related to the change in the impedance states 

(Zh/Zl) and is defined as (Lhigh/Llow). 

For a short electrical length (< π/4) a high impedance transmission line section 

emulates a series inductor as given by equation 4.6. Tunable operation is achieved by 

changing the effective width of the slot and/or the center conductor by using the diamond 

actuator.  

                                              
1 2;h l

d u
Z ZL Lq q

w w
= =                                     (4.6) 

 

In the non-actuated state of the actuator the inductor represents a high impedance 

state which translates into a high inductance value. When the bridges are actuated the 

contact pads makes a DC short with the transmission lines, leading to low impedance and 

in turn a low inductance state. Figure 4.14 (a) and (b) shows the top view the tunable 

inductor wherein the change in width of the transmission line correspond to the change in 

inductance between the two states. 
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Figure 4.14 – Change in Impedance and Effective Inductance Between the Up-State and 

Down-State of the Tunable Inductor 

  

The inductors were measured in the frequency range of 1-30 GHz in the same 

setup as that of the RF switches. Figure 4.15 and Figure 4.16 shows the return loss and 

insertion loss, respectively of the tunable inductor in the non-actuated and the actuated 

state of the diamond bridge.  
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Figure 4.15 – Measured Return Loss (S11) of the Inductor in the Non-Actuated and 

Actuated State 
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Figure 4.16 – Measured Insertion Loss (S21) of the Inductor in the Non-Actuated and 

Actuated State 

 

The effective inductance (Leff) of the circuit is extracted by numerically shorting 

port 2 of the inductor and is related to the input impedance (Zin) by equation 4.7.  

           
freq

Z
L in

eff **2
}Im{

π
=                                                (4.7) 

 

The measured inductance in the two states and the inductance ratio (Lratio) are 

shown in Figure 4.17. An inductance ratio of 2.2 was achieved at 30 GHz with 1.2 being 

the maximum inductance value. 
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Figure 4.17 – Measured Inductance in Up and Down States and Inductance Ratio 

 

4.6 Large Signal Measurements – 1st Generation 

Power handling capabilities of RF-MEMS devices have been previously 

investigated for series [38] and shunt capacitive switches [90] at X-band frequencies up 

to an input power of 7 watts. In this work, the micromachined diamond air-bridge 

integrated in the microstrip topology is tested at 2.1 GHz until 45 watts. Prior to testing, 

the microstrip substrate with the diamond bridge is modified for the measurement setup. 

The alumina wafer is solder attached to a brass carrier. Two 250 mil long, 50 Ω 

microstrip lines are fabricated on a 31 mil FR4 substrate and solder mounted on the either 

side of the alumina wafer; this is done to connect the SMA coaxial adapters on either side 

of the carrier for testing. Bond wires which are 3-mil in diameter are used to connect the 

50 Ω lines with the microstrip line on the alumina substrate. Figure 4.18 shows the details 

of the coaxial test fixture used for high power measurement. 
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Figure 4.18 – Diamond Actuator Integrated in Microstrip Topology for High Power 

Testing 

 

The setup for high power measurement is shown in Figure 4.19. Maury 

Microwave ATS 400 software was used to extract the data. An Anritsu 68169B signal 

generator is used as the RF source. The frequency and input power level for the 

measurements are 2.1 GH and 15 dBm, respectively. In the next stage the input signal is 

passed through a 100 watt amplifier with a gain of 50 dB. A three port circulator is used 

as an isolator with the third port terminated by a 100 watt load, in order to isolate the 

signal source and the amplifier from potential high reflected power. The isolator and the 

brass carrier are mounted on a heat sink to avoid thermal issues. The signal source, 

amplifier and the isolator constituted the input side of the high power setup. The output 

signal from the diamond actuator (DUT) is passed through stages of high power 

attenuators before measuring the power level in an Anritsu power meter. Prior to 

measurement, a two port thru calibration is performed wherein the reference planes were 

shifted to the inner edges of the 31 mil FR4 transmission line. Measurements are 

performed in the power range of 24-47 dBm at 2.1 GHz. For the initial test circuits, 

electrical actuation of the diamond actuators did not result in intimate contact of the 

copper pads with the host substrate due to issues associated with the flip-chip bonding. 

To work around this issue, the diamond bridges were mechanically actuated in addition to 

the applied DC voltage.  
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Figure 4.19 – High Power Bench for Testing Diamond Switches 

 

The switches are tested for self actuation and isolation in the up-state. The 

measured insertion loss (or isolation) in the non-actuated state is shown in Figure 4.20. 

As seen from graph, the measured isolation is around 16-17 dB at 2.1 GHz in the entire 

power range. Unlike most of the RF-MEMS switches, the bias pads and the RF 

transmission lines are isolated from each other in the integrated diamond actuator. This 

isolation prevents the bridges from self actuation problems when an input RF power is 

applied. Furthermore in the initial high power tests, some variation in the device 

performance was noticed and complete contact was not obtained using electrical 

actuation; this can be attributed to the height differences in the flip-chip mounted 

structures. Therefore the devices used in the high power testing required such mechanical 

actuation, which was achieved using a needle probe attached to a micro-positioner. 
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Figure 4.20 – Measured Isolation of the Diamond Actuator in the Non-Actuated State 

with Varying Input Power 

   

As shown in Figure 4.21, the insertion loss is around 0.2-0.3 dB throughout the 

entire power spectrum. Measurements were made for more than one instance for 

repeatability and there was no significant difference in the insertion loss. The diamond 

bridge was stable at such power with little or no damage due to heating of the structure. 

Diamond which also is an excellent conductor of heat acts a good heat sink during 

measurement. As an improvement to this device, a dual actuation scheme based NCD 

bridges are being developed. In this scheme, the advantages of electrostatic and thermal 

actuation are used together to develop more reliable NCD actuators. 
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Figure 4.21 – Measured Insertion Loss of the Diamond Actuator in the Actuated State 

with Varying Input Power 

 

4.7 Dual Mode Actuation of the NCD Switches 

As discussed in Chapter 2, a potential disadvantage of thermal actuation is that 

DC power may be required to hold a device in the ON-state or OFF-state. This problem 

was addressed by developing actuators which operated in a bi-stable mode, wherein the 

actuators remain down after removing the voltage.  An alternate method to address this 

issue is to develop switches which can actuate at a low voltage and avoid the current 

consumption issue by adopting a latching approach. Saias et al. [19] has demonstrated 

this technique for medium to high power applications using standard micromachining. 

The switches are fabricated on a silicon substrate in a CPW topology and are actuated 

using an integrated 300 μm X 300 μm CMOS driver. Once the devices are in the on-state 

latching electrodes secure the MEMS beam and the drive voltage/current can be 

removed.  

In the second generation switches studied in this work the diamond actuators are 

integrated onto aluminum nitride (AlN) substrates. In comparison to alumina (Al2O3), 

aluminum nitride has higher thermal conductivity (140 W/mK for AlN and 18-20 W/mK 

for Al2O3). Furthermore, this integration process is also done to exhibit the substrate 

independent nature of the diamond actuators. Furthermore, in addition to thermally 
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actuating the switches, an electrostatic latch feature is used to hold the switch in the 

actuated state. In the absence of a bi-stable operation, this dual mode actuation (thermal + 

electrostatic) scheme will be useful to avoid the power consumption issues. The 

electrostatic latch is incorporated on the host substrate. High resistive silicon chrome 

(SiCr) is deposited using an e-beam evaporator to a thickness of 1500 A0. Silicon nitride 

which serves as an isolation layer is patterned on top of the SiCr bias lines. After the 

switches are thermally actuated, SiCr and the doped diamond actuator are used as the two 

electrodes to facilitate the electrostatic latch mechanism. Figure 4.22 shows the 

description of this dual mode actuation scheme. The SiCr bias lines do not come in 

contact with the diamond bridges upon actuation and hence the issue of an electrical short 

can be avoided. In the CPW version of the switches, the electrostatic latch can be 

implemented by positioning the SiCr lines in the slot region or by using the ground 

planes as the latch electrode. 

 

 
Figure 4.22 – Fabrication and Integration of the Dual Mode Actuation Scheme of the 

NCD Bridges 
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Figure 4.22 – (Continued) 

 

4.8 Large Signal Measurements – 2nd Generation 

In the thermal scheme, the switches are first actuated at 3 volts with a current 

value of 20 mA. Then the electrostatic hold down voltage of 28-30 volts is applied 

between the SiCr pads the NCD bridge. . Furthermore, due to equipment limitations, 

measurements for the 2nd generation switches are performed at a CW frequency of 1.9 

GHz.  In order to check the power handling limit of the NCD bridges, the actuators are 

gradually tested at increasing power levels starting from 20 dBm to 40 dBm. This is done 

to better understand the performance of the actuators and also avoid any damage at high 

power levels.  Figure 4.23 shows the measured insertion loss as function of power. In this 

graph cycle 1 corresponds to a maximum power level of 30 dBm and cycle 10 

corresponds to the measured insertion loss at a maximum input power of 40 dBm. Cycle 
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1 to cycle 10 increases in power level by 1 dBm. From the measured results we can 

conclude the increased power level at little to no effect on the insertion loss. The high 

thermal conductivity of NCD films prevents issues like welding and hot spot formation at 

these elevated power levels. The measurements are stopped at 40 dBm due to the 

limitations of the high power amplifier used. New measurements are under progress to 

test the switches at high power levels by incorporating small changes in the large signal 

measurement setup. 
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Figure 4.23 – Measured Insertion Loss at a CW Frequency of 1.9 GHz with Maximum 

Input Power Varying from 30 dBm to 40 dBm 

 

In order to understand the performance of the NCD actuators at high power levels 

for a longer period of time, measurements are also carried out in the power span of 20-37 

dBm. These measurements are carried out after actuating the NCD bridges continuously 

for a maximum of 2 hours using an Agilent 33120A function generator. A square wave 

signal at a frequency of 1 KHz (value lesser than the first order mechanical resonant 

frequency) with a peak to peak (VPP) voltage of 4 volts is used for actuating the switches. 

Firstly the switches are actuated using the dual actuation scheme and then insertion loss is 

measured in the power span of 20-37 dBm. After the first set of measurements, the 

switches are actuated continuously using the thermal scheme for a period of 30 minutes. 

The high power measurements are once again carried out after that duration to see the 
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depreciation, if any, in the performance of the switches. This is repeated for a period 30-

120 minutes.  The above mentioned power level is chosen to ensure the actuators do not 

suffer any mechanical degradation over time. In addition to measuring the insertion loss, 

the switches are also tested for self actuation after the above mentioned 2 hours of testing. 

The actuators continued to exhibit no self actuation issues after actuating them 

continuously for 2 hours. Figure 4.24 and Figure 4.25 show the measured isolation loss 

and insertion loss, respectively. It is seen that the actuators exhibited consistent 

performance with no degradation in the mechanical stability and electrical performance 

of the switch. Further measurements are under progress to test the switches at high power 

levels for a longer period of time. 
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Figure 4.24 – Measured Isolation Loss After Two Hours of Continuous Actuation of the 

Diamond Bridges 
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Figure 4.25 – Measured Insertion Loss After Two Hours of Continuous Actuation of the 

Diamond Bridges 

4.9 Summary 

In this work, thermally actuated nanocrystalline diamond bridges are presented. 

Intrinsic and boron doped NCD films have been grown on low resistive silicon wafer. 

The films are intentionally grown with built in compressive stress and the measured 

values were in the range of 140- 560 MPa. Design, fabrication and integration of the 

compressively stressed bi-stable actuators are presented in detail. Experimental results of 

a RF switch and tunable inductors using nanocrystalline diamond bridges are presented. 

The switches were thermally actuated and the measured results show a return loss and 

insertion loss of 20 dB and 0.2dB, respectively, at 20GHz. Tunable inductors were also 

designed and measured in the frequency range of 1-30GHz and the measured results 

show a inductance ratio of 2.2 at 30 GHz. In addition to the thermally actuated switches, 

the second generation switches are designed utilizing both thermal and electrostatic 

actuation schemes. High power measurements are performed on the diamond actuators in 

the power range of 24-47 dBm for the mechanically actuated switches, and 24-40 dBm 

for electrically actuated switches. The measurements show an insertion loss of 0.2-03 dB 

in the entire power spectrum. 
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Chapter 5 

Nanocrystalline Diamond Capacitive Shunt Switches 

 

5.1 Introduction 

RF-MEMS devices have been implemented in a broad range of designs as DC 

contact [89] and capacitive switches [13] in series and shunt configurations [11]. This 

development work has facilitated significant maturing of the technology and technical 

challenges such as reliability [91], packaging [41] and high power operation [42] are now 

relatively well understood.  In particular, the dielectric charging mechanism [26] is one of 

the main factors that limits the reliability of capacitive switches. This charging 

mechanism has been addressed in detail by several researchers [26-29] and has been 

discussed in Chapter 2. The usage of bi-polar actuation voltage [92] is one of the 

accepted means of mitigating this phenomenon. Further reduction of charging effects can 

be realized with the use of leaky dielectrics, given that the associated microwave loss 

does not significantly impair the RF switch performance. The finite DC conductivity of 

the diamond layer provides a conductive path for possible trapped charges [93].  

In this work, a prototype design of a mm-wave shunt capacitive switch in 

coplanar waveguide, using NCD as the dielectric is presented. While the superior 

material properties of NCD films have been utilized in realizing electrostatic [94] and 

thermally [95] actuated switches, this is first demonstration of RF-MEMS switches using 

NCD as the insulator. The devices are fabricated on a high resistivity silicon substrate 

using standard lithography and surface micromachining techniques. Small signal 

measurements are performed in the frequency range of 1-65 GHz, along with preliminary 

charging studies that have been performed using Corona-Kelvin metrology (CKM) and 

standard I-V techniques.  Both techniques confirm the leaky nature of the NCD film, 

where the voltage time rate of decay observed with the CKM technique and the leakage 

current in the I-V technique are increased relative to the PECVD nitride films. 
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5.2 Design and Simulation Results  

Figure 5.1 shows the geometry of the shunt switch. The switch is designed in a 

CPW topology and the dimensions of the CPW feedlines are determined using ADS 

LinceCalc [96] to be 100 μm for the center conductor and 60 μm for the slot, yielding a 

characteristic impedance of 50 ohms. The switches are 320 μm in length and 50 μm in 

width. The overlap area of the switch with the dielectric is 130 x 130 μm. 

 
Figure 5.1 – Cross Section of the NCD Capacitive Switch 

 

The capacitive switch is actuated using the electrostatic actuation scheme, 

wherein a DC voltage is applied between the MEMS bridge and the CPW transmission 

line. This creates an electrostatic force resulting in the collapse of the suspended bridge 

on the dielectric layer. In the down-state, the capacitance contributed by the metal-

insulator-metal structure increases by a factor of 30-50. The increased capacitance 

connects the bridge and ground of the transmission line thereby creating a short at 

microwave frequencies. Once the voltage is removed, the bridge returns to the normal 

position by the restoring force. Undoped NCD film, which is the dielectric layer, is 

deposited using the MPECVD technique to a thickness of 0.5 μm. The relative dielectric 

constant of the dielectric NCD film is ~ 5. The movable membrane is 1.5 μm thick and is 

suspended 2 μm above the dielectric layer.   

The switch design can be electrically represented as a shunt LCR circuit. Figure 

5.2 shows the equivalent circuit of the capacitive shunt switch. In this “L”, is the bridge 
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inductance, CUp and CDown represents the parallel plate capacitance in the non-actuated 

and actuated state, respectively. The series resistance “R” is contributed by the 

transmission line and the bridge. Although a better model can be derived to separate the 

individual resistance values, in this work, R accounts for both the components. 

 

TL

Port 1 C

R

Port 2

TL
L

Up C Down/

 
Figure 5.2 – Equivalent Circuit of the NCD Capacitive Shunt Switch 

 

The shunt switch impedance is dependent on all three lumped elements and can 

be represented as 

      Cj
LjRZ

ω
ω 1

++=          (5.1) 

where C changes between CUp and CDown depending on the actuation state of the switch. 

The LC resonant frequency of the switch is given by 

         
LC

Fres π2
1

=                                   (5.2) 

The impedance of the switch changes depends on the frequency at which the 

switch operates. Below the resonant frequency, the circuit operates as a capacitor and 

above the resonant frequency it operates as an inductor. At the resonance frequency, the 

model is dominated by the series resistance. The up-state capacitance is a combination of 
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the parallel plate capacitance (Cpp) and the fringing field capacitance (Cff). This fringing 

field capacitance is generally 30- 40 % of Cpp, which can be represented as 

r

pp dg

wW
C

ε

ε

+
= 0          (5.3) 

where ε0 and εr are the absolute and relative dielectric constants, respectively. W and w 

are the widths of the transmission line and beam, respectively. g is the air gap between 

the transmission line and bridge and d is the thickness of the NCD dielectric layer. The 

down-state capacitance can be given by 

         
d
wW

C r
Down

εε 0=          (5.4) 

For the switch designed in this work, the inductance L does not have a significant effect 

on the up-state loss within the intended frequency band of operation. Hence the 

equivalent circuit shown in Figure 5.2 can be modeled only as a capacitor in this state.  

In addition to the basic design, an inductively tuned shunt switch (Design 2) has 

also been designed. Figure 5.3 shows the basic and inductively tuned designs. Inductively 

tuned designs are used to achieve high isolation at lower frequencies (X band etc). This 

can be done by increasing the shunt inductance while maintaining the down-state 

capacitance of the switch 

 
Figure 5.3 – Top View of the Basic and Inductively Tuned NCD Capacitive Switch 
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Figure 5.4 shows the isolation of the MEMS switch with a down-state capacitance 

of 1.26 pF. The capacitance value is similar to the standard switch. The change in 

resonant frequency is contributed by the change in inductance from the high impedance 

section transmission line between the bridge and ground plane. Simulations are 

performed for different values of L1, which is the length of the high impedance line. As 

seen from Figure 5.4, the resonant frequency shifts from 30 GHz to 20 GHz with L1 

changing from 50μm to 200μm. For convenience in this work, L1 is chosen to be 150 

μm. 
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Figure 5.4 – Simulated Change in Resonant Frequency of the Inductively Tuned Shunt 

Switch in the Down-State for Varying Lengths of the High Impedance Line 

 

The shunt switches are simulated in Agilent’s ADS Momentum which is a 2.5D 

electromagnetic simulator. Figure 5.5 and Figure 5.6 show the simulated return loss (S11) 

and insertion loss (S21) in the non-actuated state and actuated state, respectively, for both 

designs. 
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Figure 5.5 – Simulated S11 and S21 for the Basic (Design 1) and Inductively Tuned 

(Design 2) Capacitive Switch in the Up-State 
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Figure 5.6 – Simulated S11 and S21 for the Basic (Design 1) and Inductively Tuned 

(Design 2) Capacitive Switch in the Down-State 

 

From the simulated S21 response we can observe a shift in resonant frequency 

between the two designs. Although each design has nearly equal down-state capacitance 

(~ 1.28 pF), the inductively-tuned design has a much higher inductance value. The 
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modeled inductance value for design 1 and design 2 in the actuated state is 11.9 pH and 

38.7 pH, respectively.  

Figure 5.7 shows the comparison of the simulated and modeled S21 in the actuated 

state for both the designs.  Tabulated results of the lumped element components from the 

equivalent circuit will be presented in the measurements section. As stated earlier, the 

high impedance T.L has little effect on the up-state performance of the switch. 
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Figure 5.7 – Comparison of Simulated and Modeled S21 in the Down-State 

 

5.3 Material Characterization and Fabrication 

The switches are fabricated on high resistivity silicon wafers (εr=11.8, ρ > 2000 

ohm-cm) that are cleaned using a standard RCA process. The fabrication steps as shown 

in Figure 5.8 are as follows: 

• Molybdenum, which is a carbide forming material, is used as the bottom 

metal. Molybdenum is deposited by RF sputtering to a thickness of 0.7μm. 

• An intrinsic NCD film is grown to a thickness of 5000 A0. Prior to the growth 

the substrate is ultrasonically seeded in a nano-diamond powder dispersed in 

methanol. This film is later etched in O2:CF4 plasma using titanium as the etch 

mask. The typical etch rate for diamond is 300 A0/minute. 
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• CPW metal lines are fabricated using a lift-off process. The Cr/Au metal lines 

are deposited using a thermal evaporator to a total thickness of 1μm. 

• PMMA is used as the sacrificial layer and spun on to a thickness of 1.5 μm. 

The moveable membrane is gold electroplated to a thickness of 1.3 μm. Prior 

to plating, a seed layer of Cr/Au is deposited to a thickness of 1600 A0. 

• The sacrificial layer is removed in 1165 solution and the MEMS structures are 

released using a critical point dryer. 

 

In this work, the NCD film is grown using the MPECVD technique. Prior to this, 

attempts were made to deposit the films through the hot filament technique. Apparently 

the very high temperature near the filaments of the reactor (~ 12000C) caused growth 

defects and this resulted in the peeling of the underlying carbide forming layer. Both 

tungsten (W) and molybdenum (Mo) were used and the peeling problem was noticed in 

both the cases. In the MPECVD technique, NCD growth is good in both W and Mo. 

Unlike other dielectric films, the roughness of NCD on the under metal has a significant 

effect on the performance of the switch and in turn the capacitance upon actuation. Table 

5.1 shows the comparison of the roughness of the under metal before and after the 

dielectric deposition. For clarity the roughness of NCD films are compared to that of 

nitride films grown in the PECVD technique. 

 

Table 5.1 – Comparison of Roughness of Metal + Dielectric Stack Before and After 

Deposition 

Metal + Dielectric 

Combination 

Roughness before 

Dielectric (nm) 

Roughness after 

Dielectric  (nm) 

Moly + NCD 1.5 9.4 

Moly + Si3N4 1.5 4.8 

Tungsten + NCD 0.9 8.7 

Tungten + Si3N4 0.9 4.1 
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(A) (B)

(C) (D)

(E) (F)

Deposit Under Metal (Mo/W) Intrinsic NCD is grown and patterned in RIE 

CPW lines are evaporated with Cr/Au Sacrifical layer (PMMA) is spun to a 
thickness of 1.5 m

Shunt beam is gold electroplated to 1.3 m Sacrificial layer is removed in 1165 and 
released in CPD  

Figure 5.8 – Fabrication Procedure of the NCD Capacitive Switch 

 
Figure 5.9(a) and Figure 5.9 (b) show microphotographs of the fabricated shunt 

switch. As seen in Figure 5.9 (b) there are holes in the movable membrane. In addition to 

permitting the removal of the sacrificial layer during the release process, the holes allow 

faster operation of the switch by reducing the air damping. The holes are 10 μm in 

diameter and spaced 10μm apart in a triangular lattice. The holes do contribute not 

change the capacitance in the up-state, but in the down-state they do decrease the total 

capacitance. In this work this effect is not taken into consideration.  
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Bottom Electrode

NCD Dielectric 1.5 μm 
Shunt Beam

Bottom Electrode

NCD Dielectric 1.5 μm 
Shunt Beam

         
       (a)        (b) 

Figure 5.9 – Microphotograph of the Fabricated NCD Shunt Switch (a) Without Holes, 

(b) With Holes 

 
5.4 Small Signal Measurements and Analysis 

The switches are tested in the frequency range of 1-65 GHZ using an Anritsu 

Lightning VNA and 150 μm pitch probes on a Karl Suss semi automatic probe station. A 

standard center of thru TRL calibration routine is performed prior to the measurements. A 

Picosecond Pulse Labs bias-tee is used to protect the VNA ports from DC current and a 

Keithley 2400 source meter was used for the actuation of the shunt beams. The beams 

actuated at 22 volts drawing a current of 5-6 μA.  Figure 5.10 and Figure 5.11 show the 

comparison of the simulated (from ADS momentum) and measured return loss and 

insertion loss of a switch in the up-state and down-state, respectively. The up-state 

insertion loss of 1.1 dB at ~50 GHz is predominantly due to mismatch loss cause by 

beam imperfections, as verified by the high S11 value; the loss factor calculated from the 

measured S-parameters is below 0.15 over the entire frequency range. An equivalent 

CLR circuit (explained in section 5.2) is used to extract the lumped element values in 

both the states from which the capacitance was found to be 50-55 fF in the up-state, and 

0.74 pF in the down-state. The extracted inductance and resistance are 11.8 pH and 0.83 

Ω, respectively. The switch was designed to yield a down-state capacitance of 1.26 pF 

and the discrepancy in the measured value can be attributed to roughness in the NCD 

dielectric film and possibly reduction in the actual contact area due to imperfect beam 

flatness, which reduces the net capacitance upon actuation. Table 5.2 shows the 
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comparison of the extracted lumped element values from the simulation and 

measurement. In addition to the roughness, the difference in overlap area during 

measurements is another reason for the difference in capacitance values. 
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Figure 5.10 – Comparison of Simulated and Measured S11 and S21 in the Up-State of the 

NCD Capacitive Shunt Switch 
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Figure 5.11 – Comparison of Simulated and Measured S11 and S21 in the Down-State of 

the NCD Capacitive Shunt Switch 
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Table 5.2 – Comparison of the Lumped Element Values of the Capacitive Switch from 

Simulations and Measurement 

Design Name L (pH) R (ohms) Cup (fF) Cdown (pF) 

10.2 0.06 50 1.26 Design 1 (Simulated) 
 
 

Design 1 (Measured) 11.8 0.8 55 0.75 

40.8 0.06 50 1.26 Design 2 (Simulated) 
 
 

Design 2 (Measured) 
41.2 0.8 55 0.78 

 

5.5 Corona Kelvin Measurements 

The Corona Kelvin measurement (CKM) technique [97] is a non-destructive 

dielectric characterization method that does not require a top electrode and can therefore 

be used as an in-line process step. In this method, ions are generated at atmospheric 

pressure from air by putting a high potential on a short tip. These ions diffuse through air 

and are deposited on the substrate under test. The non-contact voltage is measured with a 

vibrating Kelvin probe relative to the grounded bottom electrode. In addition to the 

measured potential, this technique also computes the amount of ions deposited. Figure 

5.12 shows the setup for CKM measurement. CKM is a well established technique in the 

CMOS industry and is accurate to 0.1mV under low voltage conditions (20 volts). Figure 

5.13 and Figure 5.14 show the CKM-measured voltage decay for the nitride and diamond 

films, respectively, taken at three different sites across the wafers. It is evident from the 

data that both nitride and diamond are leaky, but the rate of voltage decay for the 

diamond film is considerably faster. The CKM method yields a voltage drop from 35 

volts to 10 volts in ~2 minutes for the nitride films. The diamond films, due to the leaky 

nature have a voltage drop from 8 volts to tenths of a volt in approximately 10 seconds.  
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Figure 5.12 – Typical Setup for Corona Kelvin Measurement (CKM)  
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Figure 5.13 - Voltage Decay of Nitride Film at Three Different Sites of Samples Through 

CKM Technique 
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Figure 5.14 – Voltage Decay of NCD Film at Three Different Sites of Samples Through 

CKM Technique 

 

5.6 Stressed I-V and C-V Measurements – 1st Generation 

In addition to CKM measurements, standard I-V and C-V tests are also performed 

to establish the non-charging nature of NCD films. For this test, metal-insulator-metal 

(MIM) and MEM structures using silicon nitride and NCD films are fabricated. The 

capacitor test structures were fabricated on high resistivity silicon substrates with 

molybdenum as the bottom electrode and the dielectric films were etched into small 

islands using standard etching recipes. The MEM devices did not work fine due to 

processing irregularities and hence the discussion is focused on the MIM structures. The 

MIM structures have a 0.7 μm thick bottom electrode made of molybdenum. The 

insulator material was grown to a thickness of 0.5 μm and the top metal was electroplated 

to a thickness of 1μm. The overall capacitance area of the MIM structure was 90 x 90 

μm. I-V measurements are carried out using a 4140B picoammeter. Measurements are 

performed at dv/dt values of 0.25 volts/sec, 0.5 volts/sec and 1 volt/sec. Figure 5.15 and 

Figure 5.16 show the leakage current for different dv/dt values for the nitride and 

diamond film, respectively.  
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Figure 5.15 – Measured Leakage Current vs Voltage for Nitride Film with Different dv/dt 

Values 
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Figure 5.16 – Measured Leakage Current vs Voltage for NCD Film with Different dv/dt 

Values 
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The leakage current (I) in the MIM capacitors is dependent on the capacitance 

(C), instantaneous rate of voltage (dv/dt), applied voltage (V), and conductance (1/R) as 

given in equation 5.5 

     
R
V

dt
dvCI +⎟

⎠
⎞

⎜
⎝
⎛= *            (5.5) 

Although both nitride and diamond films exhibit a non-linear I-V behavior, the 

strong dependence on the dv/dt term for the nitride film allows the capacitance value 

(~3.4 pF) to be extracted. For the diamond films the 1/R term dominates due to the 

conductive path provided by the diamond grain boundaries in the cluster, leading to 

leakage current in the μA range. In addition to basic I-V measurements, leakage current 

testing under stress conditions is also performed. Figure 5.17 and Figure 5.18 show the 

stress induced leakage current (SILC) measurements for nitride films stressed at 20 volts 

and 40 volts, respectively. These tests are carried out different periods of time (20 mins, 2 

hours and 5 hours). The tests performed at 20 volts have little to no effect on the leakage 

current value. This is evident from the graph in Figure 5.17 wherein the leakage current is 

almost constant after the SILC testing.  
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Figure 5.17 – Stress Induced Leakage Current (SILC) for Nitride Films Stressed at 20 

Volts for Different Periods of Time 
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In Figure 5.18, the capacitors stressed at 40 volts show an increase in current after 

the SILC tests. This increase in current can be attributed to trapped charges which lower 

the effective stress voltage of the dielectric layer. Increase in current can be a result of 

barrier lowering due to electron de-trapping or the effect of SILC [98]. Unlike barrier 

lowering, the SILC process creates a permanent defect on the dielectric layer which is 

irreversible. Stress testing creates a high resistance breakdown spot in the dielectric layer 

and is very hard to detect during in-situ measurements. The initial defect created during 

the SILC testing gets propagated overtime resulting in a dielectric breakdown.  
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Figure 5.18 – Stress Induced Leakage Current (SILC) for Nitride Films Stressed at 40 

Volts for Different Periods of Time 

 

Figure 5.19 and Figure 5.20 show the SILC results for diamond films which are 

stressed at 20 volts and 40 volts, respectively. It is evident from the graphs that stress 

induced charge does not affect or increase the leakage current before and after the tests. 

Unlike nitride films where the charges create defects, the leaky nature of NCD films does 

not allow the charge to be stored on the surface or in the bulk of the material. NCD 

capacitors were also tested under stress conditions of 60 volts but this resulted in the 

increase of leakage current to milliamps. Unlike in silicon nitride and oxide where 

milliamps of leakage current correspond to dielectric break down, the dielectric 
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properties of NCD films are not altered. C-V measurements are done to confirm this that 

the NCD films retain their dielectric properties. The results of the C-V measurements are 

shown in Figure 5.21. 
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Figure 5.19 – Stress Induced Leakage Current (SILC) for NCD Films Stressed at 20 

Volts for Different Periods of Time 
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Figure 5.20 – Stress Induced Leakage Current (SILC) for NCD Films Stressed at 40 

Volts for Different Periods of Time 
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Figure 5.21 – Capacitance Measurement of the NCD Capacitors Before and After Stress 

Tests 

 
5.7 Stressed I-V and C-V Measurements – 2nd  Generation 

In the second generation switches, tungsten is used as the bottom electrode 

instead of molybdenum. Tungsten is sputtered with Ti as a seed layer. The thickness of 

the heterostructure is deposited close to 9000 A0.  Silicon nitride and NCD films are once 

again deposited through CVD technique followed by a top electrode of gold. In this 

version, the MEM structures are also fabricated. For the MEM structures, after patterning 

the dielectric layer, PMMA, which is used as the sacrificial layer is patterned to a 

thickness of 1 micron. The top electrodes are gold electroplated to a thickness of 1 μm. 

For this set of measurements dielectric layers (both Si3N4 and NCD) of different 

thicknesses are used. This is done for the MIM and MEM structures to understand the 

effect of thickness on the I-V and C-V measurements under stress conditions. Although 

the growth conditions were closely monitored a small difference of 100-200 A0 in the 

final thickness is seen. Although this difference is crucial in many transistor applications, 

for this work the effect due to the difference in thickness is ignored. 

Figure 5.22 and Figure 5.23 show I-V measurements for the MIM nitride and 

NCD capacitors. The dielectric thickness of the nitride capacitors is 1400 A0 and for 
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NCD is 1500 A0. The area of the capacitors being tested is 90 μm X 90 μm. In order to 

avoid dielectric break down the capacitors are tested by gradually increase the voltage. 

For the nitride films, the leakage current values are low initially up to 15 volts beyond 

which the current increases and dielectric break down occurs 30 volts. In the second 

generation tests, all stress measurements are performed for duration of 1 hour. 
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Figure 5.22 – Stress Induced Leakage Current (SILC) for Nitride MIM Capacitor with 

Dielectric Thickness of 1400 A0 
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Figure 5.23 – Stress Induced Leakage Current (SILC) for NCD MIM Capacitor with 

Dielectric Thickness of 1500 A0 
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The growth time for the diamond film is too short (~ 1 hour) causing many 

defects, openings and voids in the film which result in a short upon application of an 

electric field. As the measured leakage current is in the order of mA in the first 

measurement, no stress tests are performed for the NCD capacitors.  This claim can be 

confirmed by the very high capacitance value (~ 400 pF) as shown in Figure 5.24. 

Surface defects in the diamond film lead to a through conductive path between the 

bottom and top electrode. In this work undoped NCD films exhibits dielectric behavior 

for thicknesses above 0.3 μm. 
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Figure 5.24 – Capacitance Measurement of 1500 A0 NCD MIM Capacitor 

 

MIM capacitors with 0.5 μm thick dielectric layers are used for the I-V stress 

tests. These tests, similar to the first generation switches, are carried out for both the 

nitride and diamond capacitors. Figure 5.25 and Figure 5.26 show the I-V response for 

the nitride and NCD capacitors, respectively. The MIM structures are stressed at different 

voltages for more than 1 hour. The nitride based capacitors exhibit an increase in leakage 

current after the stress tests. At higher fields (> 65 volts), the nitride capacitors are 

dominated by the Fowler-Nordheim [99] tunneling effect. This effect is not seen in the 

NCD based capacitors, wherein the higher conductivity in the diamond film dominates 

the increase in current in comparison to the nitride films.  
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Figure 5.25 – Stress Induced Leakage Current (SILC) for Nitride MIM Capacitor with 

Dielectric Thickness of 5000 A0 
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Figure 5.26 – Stress Induced Leakage Current (SILC) for NCD MIM Capacitor with 

Dielectric Thickness of 5000 A0 

 

For comparison purposes, Figure 5.27 shows the leakage current measurements 

for the nitride and NCD capacitors in the log scale. The graph shows the leakage current 
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value for the capacitors under no stress and 60 volts of stress. It is evident from the 

results, that there is a shift observed in the nitride capacitors where as the value does not 

alter in the case of NCD capacitors.  
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Figure 5.27 – Comparison of Stress Induced Leakage Current (SILC) in Log Scale for 

5000 A0 NCD and Nitride Capacitors 

 

In comparison to the first generation measurements, the new set of SILC tests are 

carried for different thickness for both the nitride and NCD films and they show a better 

performance in terms of low leakage current for the films. From the measurements, 

tungsten is better suited as the under metal in place of molybdenum. The SILC tests for 

NCD based MEM capacitors are carried out by observing the shift in leakage current and 

actuation voltage, both as a function of time. The MEM capacitors actuate at ~ 35 volts. 

Figure 5.28 shows the I-V response of the MEM capacitor in the non actuated state. 

There is no shift in the current response upto 30 volts which equates to no change in 

actuation voltage, after 2 hours of testing. When the membrane actuates and falls on the 

dielectric layer the current value increases from nA in the up-state to μA in the down- 

state as shown in Figure 5.29. In comparison to the popular dielectric (nitride or oxide) 

based capacitive switches, repeated actuation of the switches will lead to a shift in the 

actuation voltage. This problem along with the charge accumulation in the dielectric layer 
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will eventually lead to the failure of the switches. Further progress is underway to test the 

switches for a longer time to check its reliability. 
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Figure 5.28 – Measured I-V Response for the NCD MEM Capacitor in the Up-State 
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Figure 5.29 – Measured I-V Response for the NCD MEM Capacitor in the Down-State 
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5.8 Summary 

Capacitive shunt switches using undoped NCD film have been designed, 

fabricated and tested till 65 GHz. The switches are electrostatically actuated and the 

measurements show an insertion loss of 1.1 dB and an isolation of 30 dB at ~50 GHz, 

respectively. The measured capacitance in the down-state of the beam is 0.75pF in 

comparison to 1.26 pF from simulation results obtained from ADS. The difference in 

capacitance can be attributed to the roughness of the dielectric layer and the difference in 

overlap area when the beam is actuated. Charging studies are performed for the nitride 

and NCD films using CKM metrology and stressed I-V measurements. SILC 

measurements are carried out for the capacitors using both Mo and W as the bottom 

electrodes for various dielectric thicknesses. The leaky nature of the NCD films is proven 

through these measurements. Although static power consumption is an issue with NCD 

capacitors, they can be used in applications which demand little to no degradation in 

performance and allow microwatts of power consumption. 
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Chapter 6 

Summary and Recommendations 

 

6.1 Summary 

The work presented in this dissertation was focused on developing RF-MEMS 

and microwave devices based on NCD thin films. The research was multi-disciplinary 

and included thin film development and analysis (material science), mechanical 

characterization of NCD to realize compressively stressed films (mechanical engineering) 

and developing high power RF-MEMS devices based on NCD actuators and capacitive 

shunt switches with NCD as a dielectric (microwave engineering). Furthermore, this 

research presented the life cycle of a NCD based RF-MEMS starting from growth, 

proceeding to the design, fabrication and integration of the device and finishing with the 

measurement and modeling of the fabricated device.   

Growth recipes for developing intrinsic and doped NCD films along with 

different seeding techniques using microwave plasma and hot filament CVD techniques 

have been presented in detail. Mechanical characterization techniques to measure the 

Young’s modulus, first order resonant frequency and intrinsic stress of the grown NCD 

films have been demonstrated. A Young’s modulus of 1020 GPa was measured using a 

non-destructive technique. The films were intentionally grown with built in compressive 

stress and the measured values were in the range of 140- 560 MPa. Measured results for 

the effect of different growth parameters that include temperature, pressure and gas ratio 

on the intrinsic stress developed in the films have been presented.  

NCD based RF-MEMS actuators were designed for high power applications 

wherein diamond based devices were designed, fabricated and tested to generate switches 

and inductors in CPW and microstrip topologies. The thermally actuated diamond bridges 

operated in a bi-stable mode and the design to generate this bi-stable operation was 

studied using mathematical formulae from beam analysis. Mechanical and 
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electromagnetic simulations were performed using ANSYSTM and ADSTM, respectively 

to understand mechanical and electrical properties of the diamond actuators. Small signal 

S-parameter measurement was performed in the frequency range of 1-40 GHz on the 

integrated switches. Measured results show a return loss and insertion loss of 20 dB and 

0.2dB, respectively, at 20GHz. Furthermore, tunable inductors were designed and 

fabricated in a CPW topology. Measurements were carried out in the frequency range of 

1-30GHz and the measured results show an inductance ratio of 2.2 at 30 GHz. Large 

signal (high power) measurements were performed on both mechanically-actuated 

diamond switches in the power range of 24-47 dBm and on electrically actuated switches 

(that use a dual actuation scheme) in the range of 24-40 dBm. The measurements show an 

insertion loss of 0.2-0.3 dB in the entire power spectrum. The switches did not show any 

mechanical degradation and depreciation in the RF performance for the limited period in 

which the tests were performed. 

NCD films were also used as insulators in capacitive shunt switches to address 

reliability issues due to charging. Prior to the design, material characterization studies 

were performed to grow intrinsic NCD films on metal thin films. A carbide forming layer 

was necessary to facilitate NCD growth. Diamond films were successfully grown on Mo 

and W thin films with moderate roughness (~ 8-9 nm). The electrostatically actuated 

switches were simulated in Agilent’s ADS and an equivalent circuit was generated to 

extract the lumped element values of the switch model. The switches were fabricated on a 

high resistive silicon substrate using standard surface micromachining techniques. Small 

signal measurements were performed in the frequency range of 1-65 GHz with insertion 

loss of 1.1 dB and an isolation of 30 dB at ~50 GHz, respectively. Preliminary charging 

studies were performed using the CKM and I-V techniques for nitride and NCD films and 

both methods demonstrate the relatively leaky nature of the diamond dielectric film. 

Despite the finite conductivity of the NCD film, however, the measured loss of the switch 

is dominated by mismatch loss due to imperfections in the MEM beam. These NCD 

based switches can be used in applications where microwatt of power consumption is 

permitted without any depreciation in performance for a longer duration of time.  This 
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balance between microwave loss and DC conductivity may prove to be an effective 

method to mitigate dielectric charging. 

 

6.2 Recommendations for Future Work 

In order to realize switches with better performance, the shunt switches can be 

fabricated with using tungsten as the bottom electrode. This could possibly account for 

the difference in the down-state capacitance value during actuation. Furthermore, a 

thorough theoretical analysis can be carried out to better understand the different regions 

in the leakage current measurements. Reliability measurements for both the diamond 

actuators at higher power levels and the capacitive switches should be performed for a 

longer period of time. The fabricated NCD actuators and NCD capacitive switches could 

be tested in switching speed measurements. Figure 6.1 shows the typical set up which 

will be used for the switching speed measurements. The 10 GHz signal source will be 

modulated and the diode detector converts the RF signal into DC. An oscilloscope will be 

used to compare the modulated and driving waveform to measure the switching speed.  

 

 
Figure 6.1 – Block Diagram for Switching Speed Measurement  

 

Temperature-based studies on the diamond actuators will highlight the 

performance of the switch which includes microwave measurements and mechanical 

stability under low and elevated temperature conditions. The outstanding thermal 
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conductivity of NCD thin films can be useful in their operation. As an improvement to 

the current design, the contacts pads which are currently of platinum can be substituted 

with doped diamond; the low temperature UNCD films introduced by Argonne National 

Laboratories can be used. After electroplating copper, a thin film Mo or W can be 

deposited over which doped UNCD films can be grown. Repeated actuation under hold 

and cold switching conditions will have little to no effect on the contact due to the 

outstanding mechanical and material characteristics of diamond films. 

NCD based distributed MEMS transmission line (DMTL) phase shifters can be 

designed to operate in the K band. Diamond actuators designed and tested in this work 

will be used to generate these phase shifters. Figure 6.2 shows the layout of the phase 

shifter. In this design 10-12 switches will be fabricated on a single silicon frame and 

actuated using the dual (thermal + electrostatic) actuation scheme. The first generation 9 

section phase shifter that were successfully fabricated. But due to the excessive 

compressive stress in each individual switches resulted in the switches breaking from the 

silicon frame. In designing such NCD based DMTL phase shifters, it is very important to 

understand and control the stress build up during the diamond growth process. 

 
Figure 6.2 – Layout of the Multi-Bit DMTL NCD Phase Shifter 
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Ferroelectric films are widely used in the microwave community as thin films to 

generate tunable phase shifters, varactors, circulators etc. But their performance at high 

frequencies is limited due to high insertion loss and single degree of freedom in 

capacitive tuning. Combining UNCD and ferroelectric films will help overcome these 

limitations. Barium strontium titanate (BST) will be the ferroelectric material used for 

investigation. BST films need to be annealed during the deposition process or post 

annealed after deposition. UNCD films which offer outstanding thermal properties will 

be ideal for depositing BST. Sputtering, PLD and sol-gel techniques could be used for 

this investigation. Characterization tools such as SEM, AFM, XRD and Raman 

spectroscopy will be helpful used to investigate these heterostructures. This proposed thin 

film research will be the first of its kind to merge ferroelectric and diamond films. 

RF-MEMS/NEMS devices based on UNCD and BST heterostructures can be 

developed. Tunable MEMS capacitors with BST and UNCD will provide great range in 

tunability and also controlling charging issues and parasitic losses thereby increasing the 

overall Q at microwave frequencies. High power terminations and attenuators based on 

doped UNCD films can be developed. These will be a good candidate to replace the high 

power attenuators which are made of bulk substrates like aluminum nitride and beryllium 

oxide. The tunable switches could be further integrated with the UNCD high power 

attenuators to realize phase and amplitude controlled circuits. Finally true time delay 

(TTD) phase shifters integrating BST and UNCD films wherein the dual mode actuation 

scheme will be used to facilitate a multi bit 10-12 section UNCD actuator will be 

integrated to a host substrate with the heterostructure dielectric layer.  
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Appendix A     Photolithography Procedures 

 

The photolithography steps for 3000 PY negative resist is: 

• Clean sample with Acetone and Methanol. Blow dry with Nitrogen  

• Spin coat the sample with Futurrex 3000PY at 3000 rpm for 40 seconds 

• Soft bake sample at 1550C for 60 seconds on a hot plate 

• Expose the sample for 17 seconds in UV-light. A mask aligner is used for this 

purpose 

• Hard bake at 1100C for 60 seconds. 

• Develop the exposed photoresist in RD-6 for 25 seconds. Rinse the sample 

with DI water thoroughly and blow dry with Nitrogen. 

• Typical thickness : 3.4 -  3.6 µm 

 

Three kinds of ShipleyTM resists were used for varying thickness which includes 

SC 1813, 1818, and 1827. The photolithography steps for SC 18xx resist is: 

• Clean sample with Acetone and Methanol. Blow dry with Nitrogen  

• Spin coat HMDS followed with the photoresist at 2500 rpm for 30 seconds. 

HMDS is used for adhesion 

• Soft bake at 1100C for 70 seconds.  

• Expose in the mask aligner for 25 seconds 

• Develop in MF-319 for 80 seconds. Rinse thoroughly in DI water and blow 

dry with nitrogen. 

 

The photolithography steps for AZ 5214 resist is: 

• Spin PMGI SF 11@ 2500rpm for 45 secs 

• Bake it @ 180oC for 5 minutes in the hot plate 

• Repeat this process twice to yield a thickness of close to 2 microns 

• After cooling down, spin AZ 5214 @ 4000rpm for 45 secs 
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Appendix A (Continued) 

• Bake it @110oC for 90 seconds in the  hot plate 

• Expose using the mask aligner (Channel 2) for 6 seconds 

• Develop the photo-resist in AZ 726 for 35 seconds 

• Expose the PMGI in the Deep UV system for 50 minutes. This is done to 

expose the PMGI completely 

• Develop in 101 developer for 4 minutes.  

 

The photolithography process for AZ 9260 resist is: 

• Spin AZ 4533 thinner 1:50 (adhesion promoter) @ 6000rpm for 45 secs 

• Bake it @ 180oC for 5 minutes in the hot plate 

• After cooling down, spin AZ 9260 @ 6000rpm for 45 secs 

• Bake it @110oC for 3 minutes in the hot plate 

• Expose using the mask aligner (Channel 2) for 27 secs 

• Develop the photo-resist in AZ 400K: H2O {1:4}for 3 minutes 

• Rinse in water thoroughly for 2-3 minutes 

 

The photolithography process for maN 490 resist is: 

• Spin maN  @ 3000rpm for 45 secs 

• Bake @ 100oC for 10 minutes 

• Expose in CI2 for 45 secs  

• Develop in mA-332 for 1 -1.5 minutes 

• Oxygen plasma for 2 minutes 
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Appendix B     Fabrication of the Diamond Actuator and Host Substrate 

 

• A two inch low resistive silicon substrate is thoroughly cleaned with acetone 

and methanol and blow dried with nitrogen 

• An intrinsic diamond layer is grown in the big plasma system to a thickness of 

1500 A0   

• Boron doped (p-type) nanocrystalline diamond is grown to a thickness of 1.4 

μm 

• The silicon wafer with the nanocrystalline diamond is cleaned in Piranha 

solution (1 part of H2O2 + 2 parts of H2SO4) and then subjected to oxygen 

plasma for the diamond to be oxygen terminated. Oxygen terminated is 

necessary for good adhesion of metal or dielectric film with nanocrystalline 

diamond. The recipe of the oxygen plasma is: 

o O2 gas : 6 sccm ; Pressure: 100 mT ; Power: 100 watts ; Time: 2-3 mins 

• Silicon dioxide is grown using a PECVD process to a thickness of 300nm. 

This oxide layer is used as the masking layer for growing intrinsic diamond on 

top of the doped diamond layer 

• A positive tone lithographic process is carried to pattern the silicon dioxide. 

After the lithography step, silicon dioxide is etched in CF4 plasma in the RIE 

system. The recipe for etching the oxide is: 

o CF4 gas: 45 sccm ; Pressure: 40 mT ; RF power: 600 watts; Time: 20 mins 

• The photo-resist, which is used as the etch mask for silicon dioxide is 

removed by dipping in the above mentioned piranha solution for close to 2 

minutes. The photo-resist is completely removed in this process and the wafer 

is thoroughly rinsed with DI water 

• Intrinsic diamond is grown in the two samples using the hot filament CVD 

technique to a thickness of 300 nm 

• After the intrinsic diamond growth, remaining SiO2 is etched in the RIE for 30 

minutes  
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Appendix B (Continued) 

• Backside of the wafer was etched in the RIE system. During intrinsic diamond 

growth, traces of diamond are deposited on the backside. The wafers are 

treated in pure oxygen plasma to etch this diamond. The recipe is: 

o O2 gas: 45 sccm; Pressure: 40 mT; Power: 800 watts; Time: 30 mins  

• The wafer is cleaned in acetone and IPA and treated in oxygen plasma 

• A seed layer of Ti (60 A0) and Au (500 A0) is deposited using an e-beam 

evaporator. This seed layer is required for electroplating in the subsequent 

steps 

• Lithography is done to open the areas of the bi-metal (copper) using a positive 

resist. The mask is a dark field mask, so 5214 resist is used for the lift off 

process 

• Copper which is used for the thermal actuation scheme (bi-metal pads) is 

deposited using a thermal evaporator to a thickness of 2 μm 

• After the bi-metal (Cu) layer, the center contact pads along with the solder 

pads are to be electroplated. A single spin lithography using AZ 9260 is 

carried out to yield a thickness of 8-9 μm 

• Copper is electroplated to a thickness of 5 μm with a current setting of 3 mA 

and voltage setting of 0.25 volts. Electroplating is slowly done to ensure no 

stress build up in the copper films 

• The silicon wafer is cleaned with acetone and methanol and ashed in oxygen 

plasma 

• Tin solder pads are included in the actuator portion in the second generation 

switches. A two spin lithography using AZ 9260 is carried out to yield a 

thickness of 14 μm 

• Tin is electroplated to a thickness of 2-3 μm with a voltage setting of 0.16 

volts 

• Photo-resist is removed by rinsing the samples thoroughly in 1 methyl 2 

pyrilidone (1M2P). This is followed by rinsing the wafers in acetone and iso-

propanol. 
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Appendix B (Continued) 

• Photo-resist is used as the mask to etch the seed layer. A two spin lithography 

using AZ 9260 is carried out to yield a thickness of 14 μm. The seed layer is 

etched in the RIE system and the recipe is: 

o Ar: 45 sccm; Pressure: 40 mT; Power: 1200 watts; Time: 10 mins for 

etching gold 

o CF4: 45 sccm; Pressure: 40 mT; Power: 600 watts; Time: 30 mins for 

etching titanium 

• Titanium (Ti) is used as the hard mask for etching diamond. Hence close to 

380nm of titanium is deposited in the ion beam. This is a time consuming and 

slow process and also the samples are kept in two distinct positions in order to 

facilitate conformal coating of Ti throughout the wafer. This is a very crucial 

step, as non-conformal deposition of Ti will mean etching diamond from 

places where it should be protected. During deposition 5-7 minute break is 

given after every 30 minutes of deposition 

• A single spin lithography using AZ-9260 is carried out to pattern the Ti layer. 

Ti is etched in the RIE using the following recipe: 

o Pressure: 40mT ; Gas: CF4 (45 sccm); Power:600 watts ;  Time: 45mins 

• After removing the photo-resist using acetone and methanol, Ti is used as the 

hard mask to etch diamond in the RIE system. The recipe for etching diamond 

is: 

o Pressure: 10 mT; Gas: O2 (8 sccm), Ar (3 sccm); Power: 1000 watts; 

Time:10 minutes  

o Pressure: 10mT; Gas: CF4 (10 sccm); Power:500 watts; Time:10 secs  

o These two steps are repeated for a total of 3 hrs to etch the diamond 

• After removing the photo-resist used to pattern the Ti layer, a single spin 

lithography process using maN 490 is carried to deposit platinum (Pt) on the 

copper contact pad. Ti (50 A0) and Pt (500 A0) are deposited using an e-beam 

evaporator 
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Appendix B (Continued) 

• To release the diamond beams, silicon is etched in a DRIE system using 

aluminum (Al) as a hard mask. Al is deposited using an e-beam evaporator to 

a thickness of 4000 A0. Prior to this, a single spin lithography using AZ 5214 

is done.  

• The host substrates (alumina, aluminum nitride) are cleaned using acetone and 

methanol. 

• A seed layer of Ti (100 A0) and Au (1200 A0) is deposited using an e-beam 

evaporator. A single spin lithography using AZ 9260 is carried out to open the 

transmission line areas.  

• The transmission lines are gold electroplated to a thickness of 3-4 μm. The 

copper solder pads are electroplated to a thickness of 2-3 μm using the same 

procedure. 

• The diced diamond actuators are integrated onto the host substrate using the 

SOLID process with a flip chip bonder. 
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Appendix C     Fabrication of the Capacitive Shunt Switch 

 

• A one inch high resistive silicon substrate is thoroughly cleaned with acetone 

and methanol and blow dried with nitrogen 

• Molybdenum (Mo), which is the bottom electrode, is sputtered to a thickness 

of 0.9 μm. For the second generation switches tungsten is used as the bottom 

electrode. Tungsten (W) is deposited to a thickness of 1 μm after depositing a 

seed layer of Ti which is 200 A0 thick. 

• Both Mo and W are etched in an RIE system. Prior to etch process, a single 

spin 1827 lithography process is carried out. The etch recipe for W and Mo is: 

o CF4 gas: 40 sccm; O2 gas: 5 sccm; Pressure: 100 mT; Power: 150 watts; 

Time: 15 mins 

• Nanocrystalline diamond ((NCD) is grown using the MPECVD technique to a 

thickness of 0.5 μm 

• Titanium is used as the hard mask to etch diamond. Titanium is deposited 

using lift-off technique to a thickness of 4000 A0. Prior to the deposition, a 

single 3000 PY lithography process is carried out. The etch recipe for NCD 

film is: 

o O2 gas: 50 sccm; CF4 gas: 5 sccm; Pressure: 50 mT; Power: 350 watts; 

Time: 30 mins 

• Gold transmission lines are patterned using a single spin 3000 PY lithography 

process and lift-off technique to a thickness of 1 μm 

• PMMA which is used as the sacrificial layer is spun to a thickness of 2 μm. 

After spinning PMMA, titanium is patterned using 3000 PY lithography 

process and lift-off technique to a thickness of 300 A0. This titanium layer is 

used as the hard mask for etching PMMA. The etch recipe for PMMA is: 

o O2 gas: 25 sccm; Pressure: 100 mT; Power: 100 watts; Time: 10 -15 mins 
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Appendix C (Continued) 

• Titanium is removed in 1:20 (HF:H2O) and cleaned thoroughly in DI water. A 

seed layer of Ti (200 A0) and Au (2000 A0) is deposited using an e-beam 

system. 

• A single spin lithography process is carried out using 1827 photo-resist to 

open up the beam areas 

• The beam along with the pedestal is gold electroplated to a thickness of 2 

microns. In electroplating, the gold solution is heated to a temperature of 600C 

in a hot plate with a stirrer set to 2000 rpm. The current rating is set to 0.06 

mA. The thickness of the platted gold is measured using a profilometer. The 

procedure is repeated if the thickness is not equal to the desired value. Prior to 

measuring the thickness, the samples are rinse using DI water and blow dried 

with nitrogen. 

• Then using a bright-field beam mask, the beam and pedestal layers are 

protected with a positive resist, preferably 1827, using the positive tone 

process 

• The seed layer is etched throughout the sample apart from the protected beam 

areas. Gold is etched at 250C at a rate of 25 A0/sec and chrome is etched at 

400C at a rate of 40 A0/sec in gold and chrome etchant respectively 

• Finally the samples are kept in beaker of 1165 solution heated to 800C 

overnight and later rinsed in DI water and isopropyl alcohol. 

• Prior to placing the samples in the critical point dryer (CCP), they are kept in 

a beaker of high purity methanol. Following the procedure given, the samples 

are dried in the CCP, which is filled with the high purity methanol. 

• If photo-resist is still sticking on to the sample, it can be removed by ashing 

the same in a plasma etcher. The typical settings are: 

o O2 gas: 40 sccm; Pressure: 250 mT; Power: 100 watts; Time: 2 mins 
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